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Abstract

Simultaneous occurrences of multiple recurrence relations in a system of non-linear
constrained Horn clauses are crucial for proving its satisfiability. A solution of such system
is often inexpressible in the constraint language. We propose to synchronize recurrent
computations, thus increasing the chances for a solution to be found. We introduce a
notion of CHC product allowing to formulate a lightweight iterative algorithm of merging
recurrent computations into groups and prove its soundness. The evaluation over a set of
systems handling lists and linear integer arithmetic confirms that the transformed systems
are drastically more simple to solve than the original ones.

1 Introduction

Inductive invariants describe useful properties of recurrent computations. Expected as solutions
by the automated constrained Horn solvers [8, 9, 7, 12, 17, 11], they could never be delivered
due to two reasons. First, multiple individual recurrences and a high level of non-determinism
significantly enlarges the search space for each invariant. Second, the expressivity of the con-
straint language imposes extra requirements on the shape of the invariant, exacerbating the
question of its existence.

The earlier idea, originated from the literature on constraint programming, was to syn-
chronize recurrent computations by making them iterate simultaneously until either one ter-
minates [2, 4] using folding/unfolding rules. More recently, De Angelis et al. [3] adapted this
transformation to the field of constrained Horn clauses (CHC) and showed that it also relaxes
the shape of the desired invariant, simplifying its discovery. However, synchronizing an arbi-
trary number of recurrent computations could complicate the system description due to extra
relations and rules. Further reasoning about the transformed systems could be problematic,
especially if the solver is linear.

We present an alternative CHC transformation which tends to produce smaller systems for
any number of synchronizable recurrences. The key idea is to symbolically align the compu-
tations to have equal lengths and then to merge them together. The transformation itself is
inexpensive: it requires a syntactical pass over the sets of rules that live in the CHC system.
In the lower level, it performs an operation similar to the Cartesian product (thus, the intro-
duced concept is called a CHC product). Such intuitive analogy lets us set up a theoretical
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framework and prove the soundness of the transformation. To the best of our knowledge, it
is the first self-contained description of the CHCs being synchronized which is independent on
folding/unfolding rules.

Synchronization helps establish useful relational properties about recurrence relations to
hold before and after each iteration. For instance, such step-by-step reasoning allows proving the
monotonicity of Fibonacci numbers completely automatically. Furthermore, synchronization
allows proving properties about multiple iterators over the same list of integers [5]. Propagating
equalities of lists through the CHCs practically reduces the constraint language from lists to
linear arithmetic, but keeps the same level of expressivity for the systems.

We implemented our CHC product transformation and integrated it to the symbolic model
checking tool Rosette/Unbound [14] aiming to derive inductive invariants of functional pro-
grams in Racket. As a constrained Horn solver, Rosette/Unbound uses Spacer3 [12] that
effectively checks satisfiability of the transformed systems. While nearly none of the original
systems over linear arithmetic and lists was solvable, Spacer3 delivered the inductive invariants
of most of the transformed systems within a second.

Related work. Synchronization of CHCs is typically achieved using folding / unfolding
rules [3]. This transformation aims at replacing conjunctions of applications of uninterpreted
symbols in a CHC with an application of a fresh uninterpreted symbol. All other applications
of the original symbols, which are alone in some other CHC in the system, remain untouched.
In contrast, our transformation tautologically extends CHCs, and in most of the cases it helps
“cleaning”, i.e., replacing the original symbols completely. Furthermore, our algorithm in gen-
eral is less expensive itself and produces the systems that are less expensive to solve.

The systems of CHCs in question are non-linear, in a sense that their bodies contain appli-
cations of more than one uninterpreted symbol. The approaches for linearization include [10],
which proceeds by iterative construction of a linear under-approximation of the system, solv-
ing it, and checking if such partial solution also fits the original system. In many cases, our
transformation acts as linearization (more often than [3]). But instead of delivering an exact
solution for the original system (since for the considered systems, as also noticed by [15], it
barely exists), we accurately re-formulate each system and prove that it is consistent with the
original one.

The concept of “product” of programs appears in the field of relational verification for pairs
of programs [1, 13, 16]. Those approaches sequentially compose the programs, insert a pre- and a
postcondition and proceed by applying Hoare-style derivations either manually or automatically.
An interesting extension of this idea to the case of unbalanced recursion was proposed by [16].
However, since it potentially increases a search space of possible non-straightforward products,
the approach currently remains manual.

Simulation is another, yet orthogonal, approach to deal with pairs of systems of recurrent
computations specified with CHCs. Instead of proving whether a given relational property
holds, it aims to discover a fresh property that actually holds using simulation. A recently
proposed approach for such synthesis [6] is limited to the case of one-way simulation, so the
discovered facts are not guaranteed to hold as relational properties in our setting. In future, it
would be interesting to see how our approach can complement the simulation discovery.

2 Preliminaries

Throughout the paper, we consider a fixed signature pF , P , 𝑎𝑟q, where F and P are disjoint
sets of function and predicate symbols, and 𝑎𝑟 is a mapping of symbols to their arities. We
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assume that interpretation of symbols from F and P is given by structure pD, 𝜎q with non-empty
domain D, for each 𝑛-ary 𝑓 P F , 𝜎p𝑓q : D𝑛 Ñ D, and for each 𝑛-ary 𝑝 P P , 𝜎p𝑝q Ď D𝑛. Given a
countable set of variables X , a first-order language A of quantifier-free formulae over F , P , and
X is called a constraint language (or an assertion language). Constraint is a formula in A.

We assume a standard definition of satisfiability of constraints. We denote a set of free
variables of formula Φ by 𝑓𝑣pΦq. Restriction of function 𝑓 to set 𝑋 is denoted 𝑓

ˇ

ˇ

𝑋
.

Definition 1. Constrained Horn clause (CHC ) is a formula 𝐶 in a first-order logic of the form

𝜑^ 𝑝1p𝑥1q ^ . . .^ 𝑝𝑘p𝑥𝑘q ùñ 𝐻 (1)

Here we consider a fixed set R of uninterpreted relation symbols, such that R X pF Y P q “ ∅.
Expression 𝐻, called ℎ𝑒𝑎𝑑 of the clause, is either an application 𝑝0p𝑥0q, or constant K. Every
𝑝𝑖 is an uninterpreted relation symbol: 𝑝𝑖 P R , and 𝜑 is a constraint. Each 𝑥𝑖 is a vector of
variables, 𝑥𝑖r𝑗s P X for all 0 ď 𝑗 ă |𝑥𝑖|. It is convenient to introduce the following notation for
the left and right sides of 𝐶, respectively:

𝑏𝑜𝑑𝑦p𝐶q
def
“ t𝜑, 𝑝1p𝑥1q, . . . , 𝑝𝑘p𝑥𝑘qu ℎ𝑒𝑎𝑑p𝐶q

def
“ 𝐻

In spirit of constraint logic programming [4], throughout the paper we write CHCs as rules,
i.e., 𝐻 Ð 𝜑, 𝑝1p𝑥1q, . . . , 𝑝𝑘p𝑥𝑘q for (1). We distinguish three disjoint parts in the body of
each clause 𝐶, i.e., 𝑏𝑜𝑑𝑦p𝐶q “ t𝜑u Y 𝐿 Y 𝑅, where 𝜑 is a constraint, 𝑅 is a set of recursive
applications: 𝑅 “ t𝑟 P 𝑏𝑜𝑑𝑦p𝐶q | 𝑟𝑒𝑙p𝑟q “ 𝑟𝑒𝑙pℎ𝑒𝑎𝑑p𝐶qqu, and 𝐿 is a set of non-recursive
applications in the body: 𝐿 “ 𝑏𝑜𝑑𝑦p𝐶qzpt𝜑uY𝑅q. Given an expression 𝑎 “ 𝑝p�⃗�q for some 𝑝 P R ,
𝑟𝑒𝑙p𝑎q mnemonically denotes the applied relation symbol 𝑝, and 𝑎𝑟𝑔𝑠p𝑎q denotes the vector of
arguments �⃗�. For convenience, we extend functions 𝑟𝑒𝑙 and 𝑎𝑟𝑔𝑠 for all non-application or
non-relation application expressions 𝑒: 𝑟𝑒𝑙p𝑒q “ K, and 𝑎𝑟𝑔𝑠p𝑒q “ ∅⃗ (where ∅⃗ is an empty
vector). This allows us write 𝑟𝑒𝑙pℎ𝑒𝑎𝑑p𝐶qq for an arbitrary clause 𝐶.

Definition 2. Given a set of CHCs 𝑃 and 𝑝 P R , rules defining 𝑝 is a subset of 𝑃 , such that:

𝑟𝑢𝑙𝑒𝑠p𝑝q
def
“ t𝐶 P 𝑃 | 𝑟𝑒𝑙pℎ𝑒𝑎𝑑p𝐶qq “ 𝑝u

Definition 3. A system of CHCs is pair p𝑃, 𝑞q, where 𝑃 is a set of CHCs, and 𝑞 P 𝑃 is the
only clause, called 𝑞𝑢𝑒𝑟𝑦, with ℎ𝑒𝑎𝑑p𝑞q “ K.

Remark 1. Without loss of generality, for a fixed system of CHCs we assume that different
clauses have disjoint sets of free variables.

Derivations of heads in CHCs are defined using trees (see Sect. 3.1). Throughout the paper,
we write capital 𝑇 (possibly, subscripted or superscripted) for a set of trees (possibly, sharing
nodes) and lowercase 𝑡 for a single tree. Each tree 𝑡 is treated as pair r𝑟, 𝑇 s, where 𝑟 is a root
node (denoted 𝑟𝑜𝑜𝑡p𝑡q), and 𝑇 is a set of the partial subtrees. A path in tree 𝑡 is a partial
subtree of the form 𝜋 “ r𝑣,∅s or 𝜋 “ r𝑣, t𝜋1us, where 𝜋1 is a path as well. The latter case
permits also a simplified notation 𝜋 “ r𝑣, 𝜋1s. A set of all paths from the root to some leaf of 𝑡

is denoted by 𝑝𝑎𝑡ℎ𝑠p𝑡q. Finally, 𝑝𝑎𝑡ℎ𝑠p𝑇 q
def
“

Ť

𝑡P𝑇

𝑝𝑎𝑡ℎ𝑠p𝑡q, and 𝑟𝑜𝑜𝑡𝑠p𝑇 q
def
“

Ť

𝑡P𝑇

t𝑟𝑜𝑜𝑡p𝑡qu.

It is easy to see that 𝑝𝑎𝑡ℎ𝑠p∅q “ ∅, and 𝜋 P 𝑝𝑎𝑡ℎ𝑠pr𝑟, 𝑇 sq ðñ 𝜋 “ r𝑟, 𝜋1s ^ 𝜋1 P 𝑝𝑎𝑡ℎ𝑠p𝑇 q.
Also, it can be that |𝑟𝑜𝑜𝑡𝑠p𝑇 q| ă |𝑇 |, for example if 𝑇 “ 𝑝𝑎𝑡ℎ𝑠p𝑡q for some tree 𝑡 with more
than one leaf (obviously |𝑟𝑜𝑜𝑡𝑠p𝑇 q| in this case is always 1).

Definition 4. A set of trees 𝑚𝑒𝑟𝑔𝑒p𝑇 q of 𝑇 is the one of minimal cardinality, such that
𝑝𝑎𝑡ℎ𝑠p𝑚𝑒𝑟𝑔𝑒p𝑇 qq “ 𝑝𝑎𝑡ℎ𝑠p𝑇 q.
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Proposition 1. 𝑚𝑒𝑟𝑔𝑒p𝑇 q “
!

r𝑟,𝑚𝑒𝑟𝑔𝑒p𝑇 1qs
ˇ

ˇ

ˇ
𝑟 P 𝑟𝑜𝑜𝑡𝑠p𝑇 q, 𝑇 1 “ t𝑇𝑖 | r𝑟, 𝑇𝑖s P 𝑇 u

)

Remark 2. Prop. 1 implies that if |𝑟𝑜𝑜𝑡𝑠p𝑇 q| “ 1, then |𝑚𝑒𝑟𝑔𝑒p𝑇 q| “ 1.

3 Exploring Unsatisfiability of CHCs

Systems of CHCs serve as specifications for synthesis of inductive invariants. Due to decidability
restrictions of the constraint language and a large search space, inductive invariants cannot be
discovered even for certain linear systems. Disproving satisfiability, however, could be easier
since it is enough to find a single, finite counterexample as opposed to an invariant satisfying
the entire system universally. In this section, we formally discuss both notions.

3.1 Satisfiability vs unsatisfiability

Definition 5. Let 𝑆 “ p𝑃, 𝑞q be a system of CHCs over relation symbols R , and 𝑃 “

t𝐶1, . . . , 𝐶𝑛u. 𝑆 is called satisfiable, denoted 𝑠𝑎𝑡𝑆 , if there is a mapping 𝐼 : R Ñ A, called

relational symbol assignment, such that
𝑛
Ź

𝑖“1

𝐶𝑙@p𝐽p𝐶𝑖qq is satisfiable. Here 𝐶𝑙@pΦq is the uni-

versal closure of Φ, and 𝐽p𝐶q is an expression in A defined for 𝐶 having form (1):

𝐽p𝐶q
def
“

ˆ

𝜑^ 𝐼p𝑝1qp𝑥1q ^ . . .^ 𝐼p𝑝𝑘qp𝑥𝑘q ùñ

"

𝐼p𝑝qp�⃗�q, if ℎ𝑒𝑎𝑑p𝐶q “ 𝑝p�⃗�q
K, if ℎ𝑒𝑎𝑑p𝐶q “ K

˙

Relational symbol mapping 𝐼 maps each uninterpreted relation symbol from R to its inter-
pretation. It defines a solution of the system, also referred to as inductive invariant.

Definition 6. Given set 𝑃 of CHCs, 𝐶 P 𝑃 of form (1), let 𝑥0 “ 𝑎𝑟𝑔𝑠pℎ𝑒𝑎𝑑p𝐶qq. Let 𝑣0 be a
vector of values of variables in 𝑥0. We say that 𝐶 is realizable on 𝑣0, if there is an assignment
𝑣 : 𝑓𝑣p𝐶q Ñ D that extends 𝑣0 (i.e., 𝑣p𝑥0r𝑗sq “ 𝑣0r𝑗s for all 𝑗), such that:

1. constraint 𝜑 P 𝑏𝑜𝑑𝑦p𝐶q evaluates to J on 𝑣;

2. for each application 𝑝𝑖p𝑥𝑖q P 𝑏𝑜𝑑𝑦p𝐶q, there exists 𝐶𝑖 P 𝑟𝑢𝑙𝑒𝑠p𝑝𝑖q, such that 𝐶𝑖 is realizable
on 𝑣𝑖, where 𝑣𝑖r𝑗s “ 𝑣p𝑥𝑖r𝑗sq for all 0 ď 𝑗 ă |𝑥𝑖|.

Def. 6 is inductive: to realize each CHC we should “unroll” it up to the CHCs whose bodies
consist of constraints only (called facts). This unrolling induces some tree structure (finite or
infinite). We are interested only in finite ones. This lets us reformulate Def. 6 in terms of trees:

Definition 7. A tree 𝑡 “ r𝑟, 𝑇 s realizes CHC 𝐶 if

1 𝑟 “ p𝐶, 𝑣0, 𝑣q, where 𝑣0 is a vector of values from D with |𝑣0| “ |𝑎𝑟𝑔𝑠pℎ𝑒𝑎𝑑p𝐶qq|, and
𝑣 : 𝑓𝑣p𝐶q Ñ D is an assignment of all free variables in 𝐶 extending 𝑣0;

2 constraint 𝜑 P 𝑏𝑜𝑑𝑦p𝐶q evaluates to J on 𝑣;

3 for each application 𝑝𝑖p𝑥𝑖qP𝑏𝑜𝑑𝑦p𝐶q, there exists a tree 𝑡𝑖 P𝑇 , such that 𝑡𝑖“rp𝐶𝑖, 𝑣𝑖,¨q, 𝑇𝑖s,
where 𝐶𝑖 P 𝑟𝑢𝑙𝑒𝑠p𝑝𝑖q, and 𝑣𝑖r𝑗s “ 𝑣p𝑥𝑖r𝑗sq for all 0 ď 𝑗 ă |𝑥𝑖|.

4 each 𝑡𝑖 “ rp𝐶𝑖, ¨, ¨q, 𝑇𝑖s in 𝑇 realizes 𝐶𝑖.
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Definition 8. The system 𝑆 “ p𝑃, 𝑞q of CHCs is called unsatisfiable, denoted 𝑢𝑛𝑠𝑎𝑡𝑆 , if there
exists a tree, called refutation tree, 𝑡 “ rp𝑞,∅, ¨q, 𝑇 s realizing 𝑞.

Note that if a refutation tree for a system 𝑆 of CHCs can be built, then the bodies of all
CHCs from 𝑆 are evaluated to J independently on an interpretation of the relation symbols.
In other words, for every interpretation there is an assignment of variables that make the body
of the query evaluate to K, thus witnessing unsatisfiability of 𝑆.

Example 1. System 𝑆𝑝`𝑞`𝑟 of CHCs is unsatisfiable which is witnessed by the following
refutation tree. The root of the refutation tree is labeled by the body of the query with
values t3, 2, 0u substituted respectively for variables t𝑥7, 𝑥8, 𝑥9u. Three paths correspond to
the sequences of recursive applications of 𝑝, 𝑞, and 𝑟 until the facts are reached.

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

𝑝p𝑥1q Ð 𝑥1 “ 0

𝑝p𝑥2q Ð 𝑝p𝑥1q, 𝑥2 “ 𝑥1 ` 1

𝑞p𝑥3q Ð 𝑥3 “ 0

𝑞p𝑥4q Ð 𝑞p𝑥3q, 𝑥4 “ 𝑥3 ` 2

𝑟p𝑥5q Ð 𝑥5 “ 0

K Ð 𝑝p𝑥7q, 𝑞p𝑥8q, 𝑟p𝑥9q, p𝑥7 ą 𝑥8q, p𝑥8 ą 𝑥9q

p(3)

p(3) ^ q(2) ^ r(0) ^ 3 > 2 ^ 2 > 0

p(2)

p(1)

p(0)

q(2)

q(0)

r(0)

Lemma 1. 𝑠𝑎𝑡𝑆 ùñ  𝑢𝑛𝑠𝑎𝑡𝑆

To prove that a system of CHCs is unsatisfiable it is enough to find a refutation tree for it.
Interestingly, a refutation tree can be constructed by merging the individual paths (see Def. 4).

3.2 Aligning paths using tautologies

An extension 𝑆J “ p𝑃J, 𝑞q of 𝑆 “ p𝑃, 𝑞q with tautological clauses is equivalent to 𝑆, i.e., both
systems are either 𝑠𝑎𝑡 or 𝑢𝑛𝑠𝑎𝑡. In particular, let 𝑃J contain all CHCs from 𝑃 , and for each fact
𝑝p�⃗�q Ð 𝜑 in 𝑃 , let 𝑃J additionally contain a CHC 𝑝p�⃗�q Ð 𝜑, 𝑝p�⃗�q. This tautologically-extended
system 𝑆J has the following property.

Lemma 2. If 𝑢𝑛𝑠𝑎𝑡𝑆, then there exists some natural number 𝑁 and a refutation tree of 𝑆J,
such that all paths from the root of the refutation to its leaves have length 𝑁 .

Proof. If 𝑢𝑛𝑠𝑎𝑡𝑆 , then there exists some finite refutation tree 𝑡 of 𝑆. Let 𝑁 be the maximal
length among paths from 𝑟𝑜𝑜𝑡p𝑡q to the leaves. Each leaf in 𝑡 is reachable from 𝑟𝑜𝑜𝑡p𝑡q in 𝑛
steps, where 𝑛 ď 𝑁 , and it corresponds to a fact. Thus, if the last edge in 𝑡 is copied p𝑁 ´ 𝑛q
times, then the resulting tree witnesses unsatisfiability of 𝑆J due to tautological clauses.

In the rest of the paper, we assume that every refutation tree is aligned.

4 Product of CHCs

Multiple recurrence relations appearing in the same CHC complicate discovery of inductive
invariants. This can be overcome by a modification or a simplification of the system, as long
as it preserves the original semantics. The key contribution of the paper is the new CHC
transformation which relaxes the shape of the expected invariant and in many non-trivial cases
makes the transformed systems solvable.
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4.1 Defining product transformation formally

Definition 9. Non-empty sets 𝐴1, . . . , 𝐴𝑛 are covered by 𝐴, denoted 𝐴 P
X

𝐴1, . . . , 𝐴𝑛

\

, if

1. 𝐴 Ď 𝐴1 ˆ . . .ˆ𝐴𝑛, and

2. each element of each 𝐴𝑖 appears at position 𝑖 of at least one tuple 𝑥 P 𝐴.

Example 2. The following holds for the sets of natural numbers:

tp1, 3, 5q, p2, 4, 5qu P
X

t1, 2u, t3, 4u, t5u
\

tp1, 3, 5q, p2, 3, 5qu R
X

t1, 2u, t3, 4u, t5u
\

We define products gradually, for all ingredients of systems of CHCs.

Definition 10 (product of predicate applications). Given predicates 𝑝1, . . . , 𝑝𝑛 and predi-

cate 𝑟 such that 𝑎𝑟p𝑟q “
𝑛
ř

𝑖“1

𝑎𝑟p𝑝𝑖q, an 𝑟-product of applications 𝑝1p𝑥1q, . . . , 𝑝𝑛p𝑥𝑛q, denoted

𝑛
ś

𝑖“1,𝑟

𝑝𝑖p𝑥𝑖q, is an expression 𝑟p𝑥1 ¨ . . . ¨ 𝑥𝑛q. Here �⃗� ¨ �⃗� denotes the concatenation of vectors �⃗�

and �⃗�.

We may abuse the notation and write
ś

𝑟
𝑝𝑖p𝑥𝑖q or just

ś

𝑟
𝐴 for set 𝐴, if the order of elements

in the product is clear from the context.

Definition 11. Given CHC 𝐶 with 𝑏𝑜𝑑𝑦p𝐶q “ t𝜑u Y 𝐿Y𝑅, a set 𝑅{ℎ𝑒𝑎𝑑
p𝐶q is defined as:

𝑅{ℎ𝑒𝑎𝑑
p𝐶q

def
“

"

ℎ𝑒𝑎𝑑p𝐶q, if 𝑅 “ ∅
𝑅, otherwise

Def. 11 embodies the concept of the tautological extension: using 𝑅{ℎ𝑒𝑎𝑑
p𝐶q instead of 𝑅

turns every fact 𝑝p�⃗�q Ð 𝜑 into 𝑝p�⃗�q Ð 𝜑, 𝑝p�⃗�q.

Definition 12 (product of CHCs). Let 𝐶1, . . . , 𝐶𝑛 be CHCs and 𝑝1, . . . , 𝑝𝑛 be different relation
symbols, such that 𝐶𝑖 P 𝑟𝑢𝑙𝑒𝑠p𝑝𝑖q. Let 𝑝 be a fresh relation symbol, such that 𝑝 R R and 𝑎𝑟p𝑝q “
𝑛
ř

𝑖“1

𝑎𝑟p𝑝𝑖q. CHC 𝐶 over R Yt𝑝u is called product of 𝐶1, . . . , 𝐶𝑛 on 𝑝, denoted 𝐶 “ 𝐶1ˆ𝑝. . .ˆ𝑝𝐶𝑛,

if:

ℎ𝑒𝑎𝑑p𝐶q “
ź

𝑝

ℎ𝑒𝑎𝑑p𝐶𝑖q; 𝑏𝑜𝑑𝑦p𝐶q “ t𝜑u Y 𝐿Y𝑅ztℎ𝑒𝑎𝑑p𝐶qu where:

𝜑 “
𝑛
ľ

𝑖“1

𝜑𝑖; 𝐿 “
𝑛
ď

𝑖“1

𝐿𝑖;

𝑅 “
!

ź

𝑝

𝑟𝑖

ˇ

ˇ

ˇ
p𝑟1, . . . 𝑟𝑛q P

X

𝑅{ℎ𝑒𝑎𝑑
p𝐶1q, . . . , 𝑅{ℎ𝑒𝑎𝑑

p𝐶𝑛q
\

)

Definition 13 (product of relation symbols). Let 𝑃 “ t𝐶1, . . . , 𝐶𝑚u be a set of CHCs over R ,
and 𝑝1, . . . , 𝑝𝑛 be relation symbols from R . Product of 𝑝1, . . . , 𝑝𝑛, denoted 𝑝1 ˆ . . . ˆ 𝑝𝑛, is a

pair p𝑝, 𝑟𝑢𝑙𝑒𝑠p𝑝qq, where 𝑝 is a fresh relation symbol with 𝑎𝑟p𝑝q “
𝑛
ř

𝑖“1

𝑎𝑟p𝑝𝑖q, and 𝑟𝑢𝑙𝑒𝑠p𝑝q “
 

𝐶1 ˆ . . .ˆ 𝐶𝑛 | p𝐶1, . . . , 𝐶𝑛q P 𝑟𝑢𝑙𝑒𝑠p𝑝1q ˆ𝑝 . . .ˆ𝑝 𝑟𝑢𝑙𝑒𝑠p𝑝𝑛q
(

.

Now we are ready to formally define the product transformation.
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Definition 14. Let 𝑃 “ t𝐶1, . . . , 𝐶𝑚u be a set of CHCs, and some 𝐶𝑎 P 𝑃 has form:

𝐶𝑎 “ 𝐻 Ð 𝜑, 𝑝1p𝑥1q, . . . , 𝑝𝑛p𝑥𝑛q,𝑊

such that for all 1 ď 𝑖 ă 𝑗 ď 𝑛: 𝑝𝑖 ‰ 𝑝𝑗 ‰ 𝑟𝑒𝑙p𝐻q, and 𝑊 may contain other applications of
uninterpreted relation symbols R . Let p𝑝, 𝑟𝑢𝑙𝑒𝑠p𝑝qq “ 𝑝1 ˆ . . . ˆ 𝑝𝑛. A 𝑝-transformation of 𝑃
is a set 𝑃 1 of CHCs over R 1 “ R Y t𝑝u, obtained from 𝑃 by adding new rules and replacing
applications of 𝑝𝑖 in 𝐶𝑎 with their 𝑝-product:

𝑃 1
def
“ 𝑃 zt𝐶𝑎u Y 𝑟𝑢𝑙𝑒𝑠p𝑝q Y t𝐶 1𝑎u,

where 𝐶 1𝑎 has form:

𝐶 1𝑎
def
“ 𝐻 Ð 𝜑,

ź

𝑝

𝑝𝑖p𝑥𝑖q,𝑊

Remark 3. In certain cases (e.g., when the 𝑟𝑢𝑙𝑒𝑠p𝑝1q, . . . , 𝑟𝑢𝑙𝑒𝑠p𝑝𝑛q have the same topologies
and 𝑝1, . . . , 𝑝𝑛 are not mutually recursive), the applications of 𝑝1, . . . , 𝑝𝑛 might completely
disappear from the transformed system, thus making 𝑟𝑢𝑙𝑒𝑠p𝑝1q, . . . , 𝑟𝑢𝑙𝑒𝑠p𝑝𝑛q useless.

Example 3. System of CHCs 𝑆𝑝𝑞`𝑟 transformed from 𝑆𝑝`𝑞`𝑟 (shown in Ex. 1):

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

𝑝𝑞p𝑥1, 𝑥3q Ð 𝑥1 “ 0^ 𝑥3 “ 0

𝑝𝑞p𝑥2, 𝑥3q Ð 𝑝𝑞p𝑥1, 𝑥3q ^ 𝑥2 “ 𝑥1 ` 1^ 𝑥3 “ 0

𝑝𝑞p𝑥1, 𝑥3q Ð 𝑝𝑞p𝑥1, 𝑥3q ^ 𝑥1 “ 0^ 𝑥4 “ 𝑥3 ` 2

𝑝𝑞p𝑥2, 𝑥4q Ð 𝑝𝑞p𝑥1, 𝑥3q ^ 𝑥2 “ 𝑥1 ` 1^ 𝑥4 “ 𝑥3 ` 2

𝑟p𝑥5q Ð 𝑥5 “ 0

K Ð 𝑝𝑞p𝑥7, 𝑥8q ^ 𝑟p𝑥9q ^ p𝑥7 ą 𝑥8q ^ p𝑥8 ą 𝑥9q

r(0)

pq(3, 2) ^ r(0) ^ 3 > 2 ^ 2 > 0

pq(3, 2)

pq(2, 0)

pq(1, 0)

pq(0, 0)

The 𝑝𝑞-product gives rise to four new CHCs in 𝑟𝑢𝑙𝑒𝑠p𝑝𝑞q that do not have applications of 𝑝
and 𝑞, and thus 𝑟𝑢𝑙𝑒𝑠p𝑝q and 𝑟𝑢𝑙𝑒𝑠p𝑞q are not needed. 𝑆𝑝𝑞`𝑟 preserves unsatisfiability, and
the original refutation tree could be obtained by splitting the 𝑝𝑞-path (see more details in
Sect. 4.2).

4.2 Properties of product transformation

The goal of this subsection is to demonstrate that our product transformation preserves satis-
fiability and unsatisfiability for any system of CHCs.

Theorem 1. 𝑠𝑎𝑡𝑃 ùñ 𝑠𝑎𝑡𝑃 1

Proof. By Def. 5 there is 𝐼 : R Ñ A such that all clauses from 𝑃 are satisfied for all values
of free variables. Our goal is to find 𝐼 1 : R 1 Ñ A satisfying transformed system 𝑃 1. Such
assignment is constructed in the following way:

𝐼 1p𝑝qp�⃗�q
def
“

"

𝐼p𝑝qp�⃗�q, if 𝑝 P R
𝐼p𝑝1qp𝑥1q ^ . . .^ 𝐼p𝑝𝑛qp𝑥𝑛q, if 𝑝 “ 𝑝1 ˆ . . .ˆ 𝑝𝑛, 𝑝𝑖 P R , �⃗� “ 𝑥1 ¨ . . . ¨ 𝑥𝑛

Now it is easy to see that all clauses from 𝑃 1 are satisfied with 𝐼 1. Let 𝐶 1 be some clause
in 𝑃 1. It either does not have occurrences of 𝑝 or does. In the former case, it is satisfied by 𝐼 1

because it is satisfied by 𝐼. In the latter case, we again consider two situations.
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1. 𝐶 1 R 𝑟𝑢𝑙𝑒𝑠p𝑝q. In this case, 𝐶 1 is obtained by replacing applications 𝑝1p𝑥1q, . . . , 𝑝𝑛p𝑥𝑛q

in the body of some clause 𝐶 P 𝑃 with
ś

𝑝
𝑝𝑖p𝑥𝑖q. In expression 𝐽p𝐶q, it corresponds to

𝐼p𝑝1qp𝑥1q ^ . . .^ 𝐼p𝑝1qp𝑥1q, which is exactly 𝐼 1p𝑝qp𝑥1 ¨ . . . ¨ 𝑥𝑛q by construction of 𝐼 1 (i.e.,
𝐽 1p𝐶 1q is equivalent to 𝐽p𝐶q).

2. 𝐶 1 P 𝑟𝑢𝑙𝑒𝑠p𝑝q. By Def. 13 there exist clauses 𝐶1, . . . , 𝐶𝑚 from 𝑃 such that 𝐶 1 “ 𝐶1 ˆ𝑝

. . .ˆ𝑝𝐶𝑛. Thus, for every 𝐶𝑖, by Def. 5, 𝐶𝑙@p𝐽p𝐶𝑖qq is satisfiable. For some fixed variable
values, this implies that either the premise of implication in 𝐽p𝐶𝑖q is false, or both the
premise and the conclusion are true. If the premise of 𝐽p𝐶𝑖q is false then at least one
of its conjuncts are false. But by Def. 12 every conjunct of every 𝐽p𝐶𝑖q occurs in the
premise of 𝐽 1p𝐶 1q making the product implication true. Finally, if both the premise and
the conclusion of each 𝐽p𝐶𝑖q is true, then 𝐽 1p𝐶 1q also holds. Indeed, every constraint or
application of relation symbol in 𝐶 1 is either taken from some 𝐶𝑖, or it is an application
of 𝑝 (the interpretation of which is also true as the conjunction of true expressions).

Interestingly, Th. 1 is not applicable in the backward direction. The fact that inductive
invariant for the transformed system 𝑃 1 exists and expressible in A does not imply that an
invariant for the original system 𝑃 is also expressible in A, as can be seen from the following
example.

Example 4. The following system of CHCs over the theory of lists encodes the property that
the result of summing all elements of any list to 0 is the additive inverse to the result of
subtracting all elements of the same list from 0:

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

fld`p𝑥𝑠, 𝑛q Ð 𝑥𝑠 “ nil, 𝑛 “ 0

fld´p𝑦𝑠,𝑚q Ð 𝑦𝑠 “ nil,𝑚 “ 0

fld`p𝑥𝑠, 𝑛q Ð fld`p𝑥𝑠
1
, 𝑛
1
q, 𝑥𝑠 “ consp𝑥, 𝑥𝑠

1
q, 𝑛 “ 𝑛

1
` 𝑥

fld´p𝑦𝑠,𝑚q Ð fld´p𝑦𝑠
1
,𝑚

1
q, 𝑦𝑠 “ consp𝑦, 𝑦𝑠

1
q,𝑚 “ 𝑚

1
´ 𝑦

K Ð fld`p𝑥𝑠, 𝑛q ^ fld´p𝑥𝑠,𝑚q ^ p𝑛`𝑚 ‰ 0q

Despite this property seems intuitive, the corresponding inductive invariant is inexpressible
in the quantifier-free theory of lists. In contrast, the transformed system has a simple inductive
invariant: fld`{´p𝑥𝑠, 𝑛, 𝑦𝑠,𝑚q “ p𝑥𝑠 “ 𝑦𝑠q ùñ p𝑛 ` 𝑚 “ 0q which can be obtained by
propagating the negation of the linear part of the query towards the fact CHC:

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

fld`{´p𝑥𝑠, 𝑛, 𝑦𝑠,𝑚q Ð 𝑥𝑠 “ nil, 𝑛 “ 0, 𝑦𝑠 “ nil,𝑚 “ 0

fld`{´p𝑥𝑠, 𝑛, 𝑦𝑠,𝑚q Ð fld`{´p𝑥𝑠
1
, 𝑛
1
, 𝑦𝑠,𝑚q, 𝑥𝑠 “ consp𝑥, 𝑥𝑠

1
q, 𝑛 “ 𝑛

1
` 𝑥, 𝑦𝑠 “ nil,𝑚 “ 0

fld`{´p𝑥𝑠, 𝑛, 𝑦𝑠,𝑚q Ð fld`{´p𝑥𝑠, 𝑛, 𝑦𝑠
1
,𝑚

1
q, 𝑥𝑠 “ nil, 𝑛 “ 0, 𝑦𝑠 “ consp𝑦, 𝑦𝑠

1
q,𝑚 “ 𝑚

1
` 𝑦

fld`{´p𝑥𝑠, 𝑛, 𝑦𝑠,𝑚q Ð fld`{´p𝑥𝑠
1
, 𝑛
1
, 𝑦𝑠

1
,𝑚

1
q, 𝑥𝑠 “ consp𝑥, 𝑥𝑠

1
q, 𝑛 “ 𝑛

1
` 𝑥, 𝑦𝑠 “ consp𝑦, 𝑦𝑠

1
q,𝑚 “ 𝑚

1
´ 𝑦

K Ð fld`{´p𝑥𝑠, 𝑛, 𝑥𝑠,𝑚q ^ p𝑛`𝑚 ‰ 0q

In general, it is impossible to show that 𝑠𝑎𝑡𝑃 1 ùñ 𝑠𝑎𝑡𝑃 . However, we are still able to
demonstrate that whenever 𝑃 1 is satisfiable, then there does not exist a refutation tree of 𝑃 .

Theorem 2. 𝑢𝑛𝑠𝑎𝑡𝑃 ðñ 𝑢𝑛𝑠𝑎𝑡𝑃 1

Proof (1/2. Sufficiency). Let 𝑡1 be a refutation tree for 𝑃 1. Recall that each node in 𝑡1 is a
triple p𝐶, �⃗�0, 𝑣q. Here we use the notation from Def. 14: 𝐶 1𝑎 stands for clauses with replaced
applications of 𝑝1, . . . , 𝑝𝑛 in some CHC 𝐶𝑎, and p𝑝, 𝑟𝑢𝑙𝑒𝑠p𝑝qq “ 𝑝1 ˆ . . . ˆ 𝑝𝑛. Our goal is to
show that 𝑃 is also unsatisfiable. This is done in two steps: first, we build tree 𝑡 using 𝑡1 (Part
A), and then, we show that 𝑡 is a refutation tree for 𝑃 (Part B).
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Part A (Building 𝑡).

We construct 𝑡 by merging a set 𝑇 (recall Def. 4), each element of which corresponds to
some path from the root to a leaf in 𝑡1. Intuitively, 𝑇 is built as follows. If a path of 𝑡1 does not
pass through 𝐶 1𝑎, then we take it as is. Otherwise, we (1) replace node 𝐶 1𝑎 with 𝐶𝑎, (2) unroll
𝑝1, . . . , 𝑝𝑛 simultaneously (thus adding 𝑛 children, each of which corresponds to the unrolling
of 𝑝𝑖) instead of unrolling 𝑝. To formally define it, we introduce mappings 𝜏 and 𝑠𝑝𝑙𝑖𝑡 from
paths to trees:

𝜏prp𝐶, �⃗�0, 𝑣q, 𝜋sq
def
“

#

rp𝐶, �⃗�0, 𝑣q, t𝜏p𝜋qus, if 𝐶 ‰ 𝐶 1𝑎

rp𝐶𝑎, �⃗�0, 𝑣q, 𝑠𝑝𝑙𝑖𝑡p𝜋qs, if 𝐶 “ 𝐶 1𝑎

(2a)

(2b)

Mapping 𝑠𝑝𝑙𝑖𝑡 takes a path 𝜋 and outputs a set of child trees for node p𝐶𝑎, �⃗�0, 𝑣q. Let
𝜋 “ rp𝐶, �⃗�0, 𝑣q, 𝜋

1s. There could be two possible scenarios: either 𝐶 P 𝑟𝑢𝑙𝑒𝑠p𝑝q, or not. If

𝐶 R 𝑟𝑢𝑙𝑒𝑠p𝑝q, let 𝑠𝑝𝑙𝑖𝑡p𝜋q
def
“ 𝜏p𝜋q. If 𝐶 P 𝑟𝑢𝑙𝑒𝑠p𝑝q, we continue “unrolling” 𝜋1 until either a leaf

or a node with clause 𝐶 1 R 𝑟𝑢𝑙𝑒𝑠p𝑝q is reached. Formally, let

𝜋 “
”

p𝐶11, �⃗� 1
0 , 𝑣

1q,
“

. . . rp𝐶𝑚1, �⃗�𝑚
0 , 𝑣𝑚q, 𝜋1s

‰

ı

, (3)

where 𝐶𝑖1 “ 𝐶𝑖
1 ˆ𝑝 . . .ˆ𝑝 𝐶

𝑖
𝑛, 𝐶𝑖

𝑗 P 𝑃 ; and if 𝜋1 “ trp𝐶 1, ¨,¨q, ¨su then 𝐶 1 R 𝑟𝑢𝑙𝑒𝑠p𝑝q. By Def. 12,

ℎ𝑒𝑎𝑑p𝐶𝑖1q “
ś

𝑝
𝑝𝑗p�⃗�

𝑖
𝑗 q, which allows us to split the vector of values: �⃗� 𝑖

0 to �⃗� 𝑖
1 ¨ . . . ¨ �⃗�

𝑖
𝑛, such that

for each 𝑗,
ˇ

ˇ�⃗� 𝑖
𝑗

ˇ

ˇ “
ˇ

ˇ�⃗� 𝑖
𝑗

ˇ

ˇ. To sum up, in case 𝐶 P 𝑟𝑢𝑙𝑒𝑠p𝑝q, let

𝑠𝑝𝑙𝑖𝑡p𝜋q
def
“

"

”

p𝐶1
𝑖 , �⃗�

1
𝑖 , 𝑣

1
ˇ

ˇ

𝑓𝑣p𝐶1
𝑖 q
q,
“

. . . rp𝐶𝑚
𝑖 , �⃗�𝑚

𝑖 , 𝑣𝑚
ˇ

ˇ

𝑓𝑣p𝐶𝑚
𝑖 q
q, 𝜏p𝜋1qs

‰

ı

ˇ

ˇ

ˇ

ˇ

1 ď 𝑖 ď 𝑛

*

(4)

Both 𝜏 and 𝑠𝑝𝑙𝑖𝑡 enjoy the freedom in our paths notation and are defined on ∅ as ∅. Now,
when 𝜏 is formally defined, we can build a set of partial subtrees of 𝑡:

𝑇
def
“ t𝜏p𝜋q | 𝜋 P 𝑝𝑎𝑡ℎ𝑠p𝑡1qu (5)

The root node of each tree in 𝑇 is 𝜏p𝑟𝑜𝑜𝑡p𝑡1qq, and thus |𝑟𝑜𝑜𝑡𝑠p𝑇 q| “ 1. By Remark 2,
|𝑚𝑒𝑟𝑔𝑒p𝑇 q| “ 1. The only tree in 𝑚𝑒𝑟𝑔𝑒p𝑇 q is in fact the desired tree 𝑡.

Part B (Demonstrating 𝑢𝑛𝑠𝑎𝑡𝑃 ).

First, notice that despite (2) does not consider the case of 𝐶 P 𝑟𝑢𝑙𝑒𝑠p𝑝q, 𝜏 is still well-defined.
In fact, 𝜏 is used in three places: for building 𝑇 in (5), recursively applied in (2) and in (4). In
all these three cases, 𝜏 is never applied to a path starting from CHC 𝐶 P 𝑟𝑢𝑙𝑒𝑠p𝑝q.

Next, by Def. 8, 𝑟𝑜𝑜𝑡p𝑡1q “ p𝑞1,∅, ¨q. By Def. 14, if 𝑞1 “ 𝐶 1𝑎 then 𝑞 “ 𝐶𝑎, or otherwise
𝑞 “ 𝑞1. In both cases, 𝑟𝑜𝑜𝑡p𝜏p𝜋qq “ p𝑞,∅, ¨q for each 𝜋 P 𝑝𝑎𝑡ℎ𝑠p𝑡1q by (2). On the other hand,
𝑟𝑜𝑜𝑡p𝑡q “ 𝑟𝑜𝑜𝑡p𝜏p𝜋qq for some 𝜋 P 𝑝𝑎𝑡ℎ𝑠p𝑡1q, implying that 𝑟𝑜𝑜𝑡p𝑡q “ p𝑞,∅, ¨q. It remains to
show that 𝑡 realizes 𝑞, which by Def. 8 immediately implies 𝑢𝑛𝑠𝑎𝑡𝑃 . Thus, in the rest of the
proof, we demonstrate that conditions 1 , 2 , 3 , and 4 of Def. 7 are fulfilled for 𝑡.

1 is obviously fulfilled by construction of 𝑡: every node added in (2) and (4) is a triple
p𝐶, 𝑣0, 𝑣q with 𝐶 P 𝑃 and 𝑣0 is of the appropriate length; domain of 𝑣 is always 𝑓𝑣p𝐶q: in (2)
𝑓𝑣p𝐶𝑎q “ 𝑓𝑣p𝐶 1𝑎q, and in (4) 𝑣 is explicitly bound to 𝑓𝑣p𝐶q.

To ensure that 2 is fulfilled, consider two cases: whether 𝐶 P 𝑟𝑢𝑙𝑒𝑠p𝑝q or not. In case
if 𝐶 P 𝑃 1z𝑟𝑢𝑙𝑒𝑠p𝑝q, the corresponding CHC in 𝑃 has the same constraint 𝜑. In this case, (2)
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implies that 𝜏 preserves variables assignment (𝑣0 and 𝑣 are the same in both sides of equation),
keeping constraint evaluate to J. In the other case, 𝐶 P 𝑟𝑢𝑙𝑒𝑠p𝑝q, (4) splits the path to
𝑛 branches with separate variable assignments. Each 𝑣𝑖 assigns value for every free variable
of 𝐶𝑖1. By Def. 12 the constraint in each 𝐶𝑖1 is the conjunction of constraints in t𝐶𝑖

𝑗u. By

condition 2 of Def. 7 for 𝑡1, the product-constraint evaluates to J with assignment �⃗� 𝑖. Also
by Remark 1 all variables in 𝐶𝑖

𝑗 are disjoint. This immediately implies that the constraint in

each CHC 𝐶𝑖
𝑗 evaluates to J with 𝑣𝑖

ˇ

ˇ

𝑓𝑣p𝐶𝑖
1q

. That is, all constraints appearing in 𝑡 are satisfied

by the variable assignments.
To confirm that 3 is fulfilled, given 𝑡 “ rp𝐶, ¨, 𝑣q, 𝑇 s with 𝐶 P 𝑃 , we must show that for

each 𝑟p�⃗�q P 𝑏𝑜𝑑𝑦p𝐶q there is 𝑡𝑟 P 𝑇 with 𝑟𝑜𝑜𝑡p𝑡𝑟q “ p𝐶𝑟, 𝑣𝑖, ¨q for some 𝐶𝑟 P 𝑟𝑢𝑙𝑒𝑠p𝑟q (the second
condition 𝑣𝑖r𝑗s “ 𝑣p𝑥𝑖r𝑗sq is trivially fulfilled by construction). In other words, for each node
p𝐶, ¨,¨q and 𝑟p�⃗�q P 𝑏𝑜𝑑𝑦p𝐶q, we should demonstrate that there is a path

“

p𝐶, ¨,¨q, rp𝐶𝑟, ¨,¨q, 𝜋
1s
‰

P

𝑝𝑎𝑡ℎ𝑠p𝑡q with 𝐶𝑟 P 𝑟𝑢𝑙𝑒𝑠p𝑟q.
The main idea is as follows. Note that 𝜏 maps each node in 𝑡1 to one or more nodes in 𝑡

(by either preserving path or splitting it in applications of 𝑝). Thus for each node 𝑡 there is
a “source” node in 𝑡1. Since 𝑡1 is a refutation tree for 𝑃 1, all applications of relation symbols
are realized by some subtree; 𝜏 -image of some child subtree back to 𝑡 gives us the desired path.
More specifically, fix 𝑐 “ p𝐶, ¨,¨q and 𝑟p�⃗�q P 𝑏𝑜𝑑𝑦p𝐶q, and let 𝑐1 be the “source” of 𝑐 in 𝑡1. There
are three possible cases:

(a) If 𝐶 ‰ 𝐶𝑎 and 𝑟𝑒𝑙pℎ𝑒𝑎𝑑p𝐶qq R t𝑝1, . . . , 𝑝𝑛u, then by Def. 14, 𝐶 P 𝑃 X 𝑃 1, hence 𝐶 P 𝑃 1.
This implies that 𝑐1 “ p𝐶, ¨,¨q (and 𝑐 is produced by (2a)). As 𝑡1 is a refutation tree for
𝑃 1, there is path 𝜋 “

“

p𝐶, ¨,¨q, rp𝐶𝑟, ¨,¨q, 𝜋
1s
‰

in 𝑡1 with 𝐶𝑟 P 𝑟𝑢𝑙𝑒𝑠p𝑟q. Partial subtree 𝜏p𝜋q
gives us the desired path in 𝑡.

(b) If 𝐶 “ 𝐶𝑎 then 𝑡1 has node 𝑐1 “ p𝐶 1𝑎, ¨,¨q. If 𝑟 R t𝑝1, . . . , 𝑝𝑛u then we proceed similarly
to (a). Otherwise, 𝑟 “ 𝑝𝑖, and thus, there is a path 𝜋“

“

p𝐶 1𝑎, ¨,¨q, rp𝐶𝑝, ¨,¨q, 𝜋
1s
‰

P 𝑝𝑎𝑡ℎ𝑠p𝑡1q,

where 𝐶𝑝 P 𝑟𝑢𝑙𝑒𝑠p𝑝q. By (5), 𝜏p𝜋q “
”

p𝐶𝑎, ¨,¨q,
 

rp𝐶𝑗
1 , ¨,¨q, 𝑇1s, . . . , rp𝐶

𝑗
𝑛, ¨,¨q, 𝑇𝑛s

(

ı

giving

the desired path
“

𝑐, rp𝐶𝑖, ¨,¨q, . . .s
‰

P 𝑝𝑎𝑡ℎ𝑠p𝑡q with 𝐶𝑖 P 𝑟𝑢𝑙𝑒𝑠p𝑝𝑖q.

(c) If 𝑟𝑒𝑙pℎ𝑒𝑎𝑑p𝐶qq P t𝑝1, . . . , 𝑝𝑛u, then node 𝑐 is added to 𝑡 either in (2a) or in (4) as
the result of splitting. The former case is exactly the same as (a). In the latter case,
𝑐1 “ p𝐶 1, ¨,¨q is an element of some path (3), where 𝐶 1 “ 𝐶1 ˆ𝑝 . . . ˆ𝑝 𝐶𝑛 and 𝐶 “ 𝐶𝑖

for some 𝑖 (with 𝐶𝑖 P 𝑟𝑢𝑙𝑒𝑠p𝑝𝑖q). Now either 𝑟 “ 𝑝𝑖, and thus 𝑟p�⃗�q P 𝑅𝑖 Ď 𝑅{ℎ𝑒𝑎𝑑
p𝐶𝑖q (𝑟

is the recursive application in 𝐶𝑖), or 𝑟 ‰ 𝑝𝑖, and thus 𝑟 P 𝐿𝑖. In both cases, by Def. 12
there is a corresponding relation application in 𝐶 1 (recall 𝑅 “

 
ś

𝑝
𝑟𝑖 | p𝑟1, . . . 𝑟𝑛q P

X

𝑅{ℎ𝑒𝑎𝑑
p𝐶1q ˆ . . .ˆ 𝑅{ℎ𝑒𝑎𝑑

p𝐶𝑛q
\(

and 𝐿 “
𝑛
Ť

𝑖“1

𝐿𝑖); denote it 𝑟1p𝑥1q. If 𝑟 “ 𝑝𝑖 then 𝑟1 “ 𝑝,

and otherwise 𝑟1 “ 𝑟. Since 𝑡1 is a refutation tree, 𝑟1p𝑥1q is realizable by some subtree.
If 𝑟 ‰ 𝑝𝑖 then 𝑐1 is the last 𝑝-node of unrolling (3), and then 𝜏p𝜋1q is the desired subtree
of 𝑡. Otherwise, 𝑟p�⃗�q is among 𝑛 paths created by 𝑠𝑝𝑙𝑖𝑡 in (4) for each application of 𝑝𝑖.

This accomplishes the proof of 3 .

Finally note that proofs for 1 , 2 , and 3 are formulated for an arbitrary clause 𝐶. This

automatically implies that all partial subtrees of 𝑡 realize their clauses. Thus, 4 also holds.

Proof (2/2. Necessity). The general flow of proving necessity is similar to the one for suffi-
ciency: first merge paths (possibly branched to 𝑛 paths in 𝐶𝑎) of 𝑡 to 𝑡1 and then show that 𝑡1

347



Synchronizing Constrained Horn Clauses Mordvinov and Fedyukovich

Algorithm 1: CHCproduct

Input: system (𝑃, 𝑞) of CHCs, operator partition from a
set to a set of its disjoint subsets

Output: system (𝑃 1, 𝑞1) of CHCs
Data: worklist 𝑊𝐿 of CHCs

1 𝑃 1 Ð ∅;
2 𝑊𝐿Ð𝑊𝐿Y 𝑞;
3 while p emptyp𝑊𝐿qq do
4 𝐶𝑎 Ð getp𝑊𝐿q;
5 𝑃𝑟𝑡Ð partitionpgetNonRecPartp𝐶𝑎qq;

6 foreach
`

t𝑝1p𝑥1q, . . . , 𝑝𝑛p𝑥𝑛qu P 𝑃𝑟𝑡
˘

do
7 p𝑝, 𝑟𝑢𝑙𝑒𝑠p𝑝qq Ð 𝑝1 ˆ . . .ˆ 𝑝𝑛;

8 𝐶𝑎 Ð replace
´

𝐶𝑎, 𝑝1p𝑥1q, . . . , 𝑝𝑛p𝑥𝑛q,
ś

𝑝
𝑝𝑖p𝑥𝑖q

¯

;

9 foreach p𝐶 P 𝑟𝑢𝑙𝑒𝑠p𝑝qq do 𝑊𝐿Ð𝑊𝐿Y 𝐶;

10 end
11 𝑃 1 Ð 𝑃 1 Y 𝐶𝑎;

12 end

is refutation for 𝑃 1. The main problem here is that different paths of 𝑡 have different lengths:
when fact clause is reached in one of 𝑛 branches that does not mean that it is reached in other
branches. Formally, case of 𝑅 “ ∅ in Def. 11 stays uncovered. This problem is solved by
tautological extension of 𝑃 and Lemma 2. We skip the text of the proof due to the similarity
to the proof of sufficiency.

Theorem 3. 𝑠𝑎𝑡𝑃 1 ùñ  𝑢𝑛𝑠𝑎𝑡𝑃

Proof. This fact is immediately implied by Lemma 1 and Th. 2.

5 Connecting with Practice

Our CHC transformation approach, called CHCproduct, is outlined in Alg. 1. It takes an
original system p𝑃, 𝑞q of CHCs as input and outputs a merged system p𝑃 1, 𝑞1q of CHCs, that
further can be processed with an off-the-shelf constrained Horn solver. The algorithm maintains
a worklist 𝑊𝐿 of CHCs and initializes 𝑊𝐿 by the query 𝑞 (line 2). In each iteration, the
algorithm pops an element 𝐶𝑎 from 𝑊𝐿 (line 4), modifies it (line 8), and inserts to 𝑃 1 (line 11).

For each 𝐶𝑎, the algorithm identifies the non-recursive part 𝐿 from its body and splits it
into disjoint subsets (line 5). Then, for each set t𝑝1, . . . , 𝑝𝑛u, it performs the 𝑝-transformation
of the original system (recall Def. 14), in which p𝑝, 𝑟𝑢𝑙𝑒𝑠p𝑝qq Ð 𝑝1 ˆ . . . ˆ 𝑝𝑛. It is likely that
simultaneous applications of t𝑝1, . . . , 𝑝𝑛u appear along the algorithm’s run several times (e.g.,
in Ex. 5). It is sufficient to replace each such appearance with a new application of the same 𝑝.

Importantly, the bodies of 𝑟𝑢𝑙𝑒𝑠p𝑝q (line 9) could contain multiple applications of the other
relation symbols, for which the new products could be potentially created. The algorithm
considers them in the next iterations. Obviously, the algorithm can be optimized, so it inserts
each of 𝑟𝑢𝑙𝑒𝑠p𝑝q to 𝑊𝐿 exactly once.

Example 5. Consider the system of CHCs that encodes the recurrent computation of 𝑛𝑛 and
𝑛! for any number 𝑛 ą 1:
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$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

mltp𝑢, 𝑣, 𝑣
1
q Ð 𝑢 “ 0, 𝑣

1
“ 0

fctp𝑛, 𝑥
1
q Ð 𝑛 “ 0, 𝑥

1
“ 1

pwrp𝑚, 𝑦, 𝑦
1
q Ð 𝑚 “ 0, 𝑦

1
“ 1

mltp𝑢, 𝑣, 𝑣
1
q Ð mltp𝑢´ 1, 𝑣, 𝑤q, 𝑢 ‰ 0, 𝑣

1
“ 𝑣 ` 𝑤

fctp𝑛, 𝑥
1
q Ð fctp𝑛´ 1, 𝑎q,mltp𝑎, 𝑛, 𝑥

1
q, 𝑛 ‰ 0

pwrp𝑚, 𝑦, 𝑦
1
q Ð pwrp𝑚´ 1, 𝑦, 𝑏q,mltp𝑏, 𝑦, 𝑦

1
q,𝑚 ‰ 0

K Ð fctp𝑛, 𝑥
1
q, pwrp𝑛, 𝑛, 𝑦

1
q, 𝑛 ą 1, 𝑥

1
ě 𝑦

1

The system uses three relation symbols, mlt, fct, and pwr, for the multiplication, factorial,
and power, respectively. mltp𝑢, 𝑣, 𝑣1q defines the computation of 𝑣1“ 0` 𝑣 ` . . .` 𝑣

looooomooooon

𝑢

, which is

equivalent to 𝑢 ¨ 𝑣; fctp𝑛, 𝑥1q defines the computation of 𝑥1“ 1 ¨ 1 ¨ . . . ¨ 𝑛
looomooon

𝑛

, which is equivalent

to 𝑛!, and pwrp𝑚, 𝑦, 𝑦1q defines the computation of 𝑦1“ 1 ¨ 𝑦 ¨ . . . ¨ 𝑦
looomooon

𝑚

, which is equivalent to 𝑦𝑚.

The query establishes a property about the results of these computations. The interpretations
for mlt, fct, and pwr exist iff @𝑛, s.t. 𝑛 ą 1,  p𝑛! ě 𝑛𝑛q holds.

Algorithm CHCproduct makes the system solvable in linear arithmetic. The algorithm
starts with the query, which has the conjunction of applications of fct and pwr, produces
a product pfp, 𝑟𝑢𝑙𝑒𝑠pfpqq “ fct ˆ pwr, and rewrites the query accordingly. After the first
iteration, 𝑊𝐿 contains the following CHCs:

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

fpp𝑛, 𝑥
1
,𝑚, 𝑦, 𝑦

1
q Ð 𝑛 “ 0, 𝑥

1
“ 1,𝑚 “ 0, 𝑦

1
“ 1

fpp𝑛, 𝑥
1
,𝑚, 𝑦, 𝑦

1
q Ð fpp𝑛´ 1, 𝑎,𝑚, 𝑦, 𝑦

1
q,mltp𝑎, 𝑛, 𝑥

1
q, 𝑛 ‰ 0,𝑚 “ 0, 𝑦

1
“ 1

fpp𝑛, 𝑥
1
,𝑚, 𝑦, 𝑦

1
q Ð fpp𝑛, 𝑥

1
,𝑚´ 1, 𝑦, 𝑏q, 𝑛 “ 0, 𝑥

1
“ 1,mltp𝑏, 𝑦, 𝑦

1
q,𝑚 ‰ 0

fpp𝑛, 𝑥
1
,𝑚, 𝑦, 𝑦

1
q Ð fpp𝑛´ 1, 𝑎,𝑚´ 1, 𝑦, 𝑏q,mltp𝑎, 𝑛, 𝑥

1
q, 𝑛 ‰ 0,mltp𝑏, 𝑦, 𝑦

1
q,𝑚 ‰ 0

K Ð fpp𝑛, 𝑥
1
, 𝑛, 𝑛, 𝑦

1
q, 𝑛 ą 1, 𝑥

1
ě 𝑦

1

In the next iteration, CHCproduct processes all the CHCs in 𝑊𝐿 including the following:

fpp𝑛, 𝑥
1
,𝑚, 𝑦, 𝑦

1
q Ð fpp𝑛´ 1, 𝑎,𝑚´ 1, 𝑦, 𝑏q,mltp𝑎, 𝑛, 𝑥

1
q, 𝑛 ‰ 0,mltp𝑏, 𝑦, 𝑦

1
q,𝑚 ‰ 0

The CHC has the conjunction of applications of mlt and mlt and thus, the algorithm produces
a product pmlt2, 𝑟𝑢𝑙𝑒𝑠pmlt2qq “ mlt ˆ mlt similarly to pfp, 𝑟𝑢𝑙𝑒𝑠pfpqq “ fct ˆ pwr from
the previous iteration. Note that in order to use Def. 12, which disallows self-products, the
algorithm preliminarily duplicates 𝑟𝑢𝑙𝑒𝑠pmltq and makes all variables unique (to comply with
Remark 1) by adding indexes t1, 2u to the variables. The final system is as follows:
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’

’

’

’

’

%

mltp𝑢, 𝑣, 𝑣
1
q Ð 𝑢 “ 0, 𝑣

1
“ 0

mltp𝑢, 𝑣, 𝑣
1
q Ð mltp𝑢´ 1, 𝑣, 𝑤q, 𝑢 ‰ 0, 𝑣

1
“ 𝑣 ` 𝑤

mlt
2
p𝑢1, 𝑣1, 𝑣

1
1, 𝑢2, 𝑣2, 𝑣

1
2q Ð 𝑢1 “ 0, 𝑣

1
1 “ 0, 𝑢2 “ 0, 𝑣

1
2 “ 0

mlt
2
p𝑢1, 𝑣1, 𝑣

1
1, 𝑢2, 𝑣2, 𝑣

1
2q Ð mlt

2
p𝑢1 ´ 1, 𝑣1, 𝑤1, 𝑢2, 𝑣2, 𝑣

1
2q, 𝑢1 ‰ 0, 𝑣

1
1“ 𝑣1`𝑤1, 𝑢2 “ 0, 𝑣

1
2 “ 0

mlt
2
p𝑢1, 𝑣1, 𝑣

1
1, 𝑢2, 𝑣2, 𝑣

1
2q Ð mlt

2
p𝑢1, 𝑣1, 𝑣

1
1, 𝑢2 ´ 1, 𝑣2, 𝑤2q, 𝑢1 “ 0, 𝑣

1
1 “ 0, 𝑢2 ‰ 0, 𝑣

1
2“ 𝑣2`𝑤2

mlt
2
p𝑢1, 𝑣1, 𝑣

1
1, 𝑢2, 𝑣2, 𝑣

1
2q Ð mlt

2
p𝑢1 ´ 1, 𝑣1, 𝑤1, 𝑢2 ´ 1, 𝑣2, 𝑤2q, 𝑢1 ‰ 0, 𝑣

1
1“ 𝑣1`𝑤1, 𝑢2 ‰ 0, 𝑣

1
2“𝑣2`𝑤2

fpp𝑛, 𝑥
1
,𝑚, 𝑦, 𝑦

1
q Ð 𝑛 “ 0, 𝑥

1
“ 1,𝑚 “ 0, 𝑦

1
“ 1

fpp𝑛, 𝑥
1
,𝑚, 𝑦, 𝑦

1
q Ð fpp𝑛´ 1, 𝑎,𝑚, 𝑦, 𝑦

1
q,mltp𝑎, 𝑛, 𝑥

1
q, 𝑛 ‰ 0,𝑚 “ 0, 𝑦

1
“ 1

fpp𝑛, 𝑥
1
,𝑚, 𝑦, 𝑦

1
q Ð fpp𝑛, 𝑥

1
,𝑚´ 1, 𝑦, 𝑏q, 𝑛 “ 0, 𝑥

1
“ 1,mltp𝑏, 𝑦, 𝑦

1
q,𝑚 ‰ 0

fpp𝑛, 𝑥
1
,𝑚, 𝑦, 𝑦

1
q Ð fpp𝑛´ 1, 𝑎,𝑚´ 1, 𝑦, 𝑏q,mlt

2
p𝑎, 𝑛, 𝑥

1
, 𝑏, 𝑦, 𝑦

1
q, 𝑛 ‰ 0,𝑚 ‰ 0

K Ð fpp𝑛, 𝑥
1
, 𝑛, 𝑛, 𝑦

1
q, 𝑛 ą 1, 𝑥

1
ě 𝑦

1
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Note that each CHC has at most one application of the relation symbol in the non-recursive
part. A solution to the system (i.e., interpretation to symbols mlt, mlt2, and fp) is expressible
in linear arithmetic. In contrast, original system would require an invariant for fct and pwr
over non-linear arithmetic, which is hard (if not practically impossible) to find.

Discussion. A prominent feature of the algorithm is that it cleans the transformed system
off the dead relation symbols and unused CHCs (recall Remark 3), likely simplifying the task of
its further solving. Some degree of the algorithm’s success is also due to an implementation of
method partition that specifies the grouping of the predicate applications. In our experience,
it should be guided by the prior analysis of the structure of each set 𝑟𝑢𝑙𝑒𝑠p𝑝𝑖q. For instance,
a product of a recurrent and a non-recurrent relation (e.g., 𝑝 and 𝑟 in Ex. 1) would not bring
any benefits, since it is just easier to unfold the latter once [3].

The particular choice of coverage (Def. 9) in the 𝑝-transformation allows to overcome the
challenge of merging non-trivial recurrences. That is, if the recursive part of the body of some
CHC has more than two applications (like for Fibonacci numbers in Ex. 6) then the coverage
(Def. 9) is not unique. However, it makes sense to choose the coverage consistently with how
the inductive arguments evolve. This is closely referred to the concept of synchronous product
that is discussed in details in the next section.

6 Synchronous Product of CHCs

The broadly defined product of CHCs does not prevent the situation when for the same original
system of CHCs, there are multiple transformed systems that satisfy Def. 12. But not all such
systems can be efficiently solved. In this section, we analyze the properties of CHCs and refine
our theoretical concept of product into a more practical concept of synchronous product.

Example 6. Consider the system of CHCs that verifies the monotonicity of Fibonacci numbers:

$

’

&

’

%

fibp𝑛, 𝑥q Ð 𝑥 “ 1, 𝑛 ă 2

fibp𝑛, 𝑥q Ð fibp𝑛´ 1, 𝑥
1
q, fibp𝑛´ 2, 𝑥

2
q, 𝑥 “ 𝑥

1
` 𝑥

2
, 𝑛 ě 2

K Ð fibp𝑛1, 𝑥1q, fibp𝑛2, 𝑥2q, p𝑛1 ă 2^ 𝑛2 ă 2q _ 𝑛2 ě 𝑛1, 𝑥2 ă 𝑥1

In order to construct the product pfib2, 𝑟𝑢𝑙𝑒𝑠pfib2qq “ fibˆfib, we preliminarily duplicate
𝑟𝑢𝑙𝑒𝑠pfibq and add indexes t1, 2u to all variables (otherwise Def. 12 would not be applicable).
The difficulty starts when merging recursive clauses requiring to choose a particular coverage
of

X

pfibp𝑛1 ´ 1, 𝑥11q, fibp𝑛1 ´ 2, 𝑥21qq, pfibp𝑛2 ´ 1, 𝑥12q, fibp𝑛2 ´ 2, 𝑥22qq
\

. This gives rise to two
possible systems of CHCs, but only one of them is solvable by the constrained Horn solvers for
linear arithmetic:

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

fib
2
p𝑛1, 𝑥1, 𝑛2, 𝑥2q Ð 𝑥1 “ 1, 𝑛1 ă 2, 𝑥2 “ 1, 𝑛2 ă 2

fib
2
p𝑛1, 𝑥1, 𝑛2, 𝑥2q Ð fib

2
p𝑛1, 𝑥1, 𝑛2´1, 𝑥

1
2q, fib

2
p𝑛1, 𝑥1, 𝑛2´2, 𝑥

2
2q, 𝑥1 “ 1, 𝑥2 “ 𝑥

1
2`𝑥

2
2, 𝑛1 ă 2, 𝑛2 ě 2

fib
2
p𝑛1, 𝑥1, 𝑛2, 𝑥2q Ð fib

2
p𝑛1´1, 𝑥

1
1, 𝑛2, 𝑥2q, fib

2
p𝑛1´2, 𝑥

2
1, 𝑛2, 𝑥2q, 𝑥1 “ 𝑥

1
1`𝑥

2
1, 𝑥2 “ 1, 𝑛1 ě 2, 𝑛2 ă 2

fib
2
p𝑛1, 𝑥1, 𝑛2, 𝑥2q Ð fib

2
p𝑛1´1, 𝑥

1
1, 𝑛2´1, 𝑥

1
2q, fib

2
p𝑛1´2, 𝑥

2
1, 𝑛2´2, 𝑥

2
2q, 𝑥1“𝑥

1
1`𝑥

2
1, 𝑥2“𝑥

1
2`𝑥

2
2, 𝑛1ě2, 𝑛2ě2

K Ð fib
2
p𝑛1, 𝑥1, 𝑛2, 𝑥2q, p𝑛1 ă 2^ 𝑛2 ă 2q _ 𝑛2 ě 𝑛1, 𝑥2 ă 𝑥1
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Before we introduce the concept of synchronous product of relations that explains the choice
of the coverage and some other details of fib2-product, we need a quick detour through the
graph theory.

Definition 15. Given undirected unweighted graph 𝐺 “ x𝑉,𝐸y, set 𝐶 Ď 2𝑉 is called 𝑛-clique-
cover of 𝐺 iff:

1. @𝑐 P 𝐶, |𝑐| “ 𝑛;

2. @𝑐 P 𝐶,@𝑣1, 𝑣2 P 𝑐, 𝑣1 ‰ 𝑣2 ùñ p𝑣1, 𝑣2q P 𝐸, i.e., every subgraph induced by a set of
nodes 𝑐 is a subclique of 𝐺;

3. @𝑣 P 𝑉 ùñ D𝑐 P 𝐶, 𝑣 P 𝑐.

We denote a set of all 𝑛-clique-covers of 𝐺 by C𝑛p𝐺q. We say that 𝐺 is 𝑛-clique-coverable,
if C𝑛p𝐺q ‰ ∅.

Example 7. Three bipartite graphs in Fig. 1 are all 2-clique-coverable. Note that for each
2-clique-coverable bipartite graph 𝐺 “ x𝑉,𝐸y, 𝐸 P C2p𝐺q.

Given two finite sets 𝐴1 and 𝐴2, such that 𝐴1X𝐴2 “ ∅, then any symmetric binary relation
𝜔 Ď 𝐴1 ˆ𝐴2 defines an undirected unweighted bipartite graph 𝐺 “ x𝐴1 Y𝐴2, 𝜔y: 𝑥1 P 𝐴1 and
𝑥2 P 𝐴2 are connected in 𝐺 iff 𝜔p𝑥1, 𝑥2q holds. More generally, for 1 ď 𝑖 ă 𝑗 ď 𝑛, finite sets
𝐴1, . . . , 𝐴𝑛 such that 𝐴𝑖 X𝐴𝑗 “ ∅ and symmetric binary relations 𝜔𝑖𝑗 Ď 𝐴𝑖 ˆ𝐴𝑗 determine an

undirected 𝑛-partite graph 𝐺 “
Ť

1ď𝑖ă𝑗ď𝑛

x𝐴𝑖Y𝐴𝑗 , 𝜔𝑖𝑗y. We denote 𝐺 “ x
𝑛
Ť

𝑖“1

𝐴𝑖, ¨y if 𝜔𝑖𝑗 are not

important in the context.

Lemma 3. Let 𝐺 “ x
𝑛
Ť

𝑖“1

𝐴𝑖, ¨y be 𝑛-partite graph. Then

𝐴 P C𝑛p𝐺q ùñ 𝐴 P
X

𝐴1, . . . , 𝐴𝑛

\

Now we are ready to formally introduce the concept of synchronous product of two relations.

Definition 16. Let 𝐶𝑝 and 𝐶𝑞 be CHCs with heads 𝑝p�⃗�q and 𝑞p�⃗�q respectively. Let 𝑏𝑜𝑑𝑦p𝐶𝑝q “

t𝜑𝑝uY𝐿𝑝Y𝑅𝑝 and 𝑏𝑜𝑑𝑦p𝐶𝑞q “ t𝜑𝑞uY𝐿𝑞Y𝑅𝑞. Let binary relation 𝜔𝑝𝑞 on recursive applications
of relation symbols be defined as follows:

𝜔𝑝𝑞p𝑎, 𝑏q
def
“ $ 𝜑𝑝 ^ 𝜑𝑞 ^

ľ

p𝐿𝑝 Y 𝐿𝑞q ùñ

´

𝜌𝑝𝑞p�⃗� ¨ �⃗�q ùñ 𝜌𝑝𝑞
`

𝑎𝑟𝑔𝑠p𝑎q ¨ 𝑎𝑟𝑔𝑠p𝑏q
˘

¯

(6)

where 𝜌𝑝𝑞 is some fixed-arity relation. Clauses 𝐶𝑝 and 𝐶𝑞 are called synchronized by 𝜌𝑝𝑞 iff
graph 𝐺p𝐶𝑝, 𝐶𝑞q is 2-clique-coverable:

𝐺p𝐶𝑝, 𝐶𝑞q
def
“ x𝑅{ℎ𝑒𝑎𝑑

p𝐶𝑝q Y𝑅{ℎ𝑒𝑎𝑑
p𝐶𝑞q, 𝜔𝑝𝑞y

We say that two relations are synchronized by 𝜌𝑝𝑞 if the recursive calls of 𝑝 and 𝑞 can iterate
simultaneously, i.e., some arguments of 𝑝 and arguments in 𝑞 evolve (e.g., increment, decrement,
or stay the same) consistently to relation 𝜌𝑝𝑞 that is used in (6) and could be derived from the
query of the system of CHCs. That is, if 𝑝 and 𝑞 are initialized with two values related via
𝜌𝑝𝑞 and both terminate, then 𝜌𝑝𝑞 is preserved during the entire computation process. Binary
relation 𝜔𝑝𝑞 determines the preservation of 𝜌𝑝𝑞 of those values via checking the validity of
implication in (6). In practice, computations are often synchronized, e.g., two iterators over
lists are synchronized by the list-specifying parameter (in this case, 𝜌𝑝𝑞 equates lists). The same
is true for any recursive data structure.
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fib(n2 � 2, x00
2)

fib(n2 � 1, x0
2)fib(n1, x1)

(a)

fib(n1 � 1, x0
1)

fib(n1 � 2, x00
1) fib(n2 � 2, x00

2)

fib(n2 � 1, x0
2)

(b)

fib(n1 � 1, x0
1)

fib(n1 � 2, x00
1)

fib(n2, x2)

(c)

Figure 1: Applications of fib connected while constructing the fib2-product in Ex. 6 (dashed
ovals correspond to the cases when 𝑅{ℎ𝑒𝑎𝑑

p𝐶q is composed of ℎ𝑒𝑎𝑑p𝐶q).

Definition 17. Given CHCs 𝐶1, . . . , 𝐶𝑛 and family of relations t𝜌𝑖𝑗u, such that 𝐶𝑖 and 𝐶𝑗 are
synchronized by 𝜌𝑖𝑗 for 1 ď 𝑖 ă 𝑗 ď 𝑛. A synchronous product of 𝐶1, . . . , 𝐶𝑛 on 𝜌𝑖𝑗 and 𝑝 is
defined similarly to product 𝐶1ˆ𝑝 . . .ˆ𝑝𝐶𝑛 (recall Def. 12) with the only difference in how the
recursive applications are matched:

𝑅
def
“

!

ź

𝑝

𝑟𝑖

ˇ

ˇ

ˇ
p𝑟1, . . . , 𝑟𝑛q P C𝑛

`

ď

1ď𝑖ă𝑗ď𝑛

𝐺p𝐶𝑖, 𝐶𝑗q
˘

)

Similarly, we extend the definition of product of relation symbols 𝑝1, . . . , 𝑝𝑛 (recall Def. 13)
to the synchronous case, denoted ’𝑓 p𝑝1, . . . , 𝑝𝑛q. Intuitively, by introducing synchronous
product we use a subset of the synchronization information that can be mined from the given
system of CHCs via the additional queries to the solver. This information identifies connections
among recursive applications, thus simplifying the task of discovering an inductive invariant for
the transformed system.

It can be noticed that (6) is a tautology in case when t𝜌𝑖𝑗u are true on all inputs. In this
case, synchronous product does not restrict any connections. Such weakest possible synchronous
product is mnemonically denoted ’J p𝑝1, . . . , 𝑝𝑛q.

Remark 4. ’J p𝑝1, . . . , 𝑝𝑛q “ 𝑝1 ˆ . . .ˆ 𝑝𝑛.

Further simplifications of the system are due to 𝐶𝑎 from Def. 14, which drives the entire
transformation. In our experiments, we mine relations t𝜌𝑖𝑗u from the constraint of 𝐶𝑎, in
particular, by picking a subset (or the entire set, if possible) of its conjuncts satisfying (6).

Example 8. Let us demonstrate how the synchronous product affects matching the recursive
premises in Ex. 6, where 𝐶𝑎 is the query CHC. Because 𝐶𝑎 assumes that p𝑛1 ă 2 ^ 𝑛2 ă

2q _ 𝑛2 ě 𝑛1 is true, we let 𝜌p𝑥, 𝑦q
def
“ p𝑥 ă 2 ^ 𝑦 ă 2q _ 𝑦 ě 𝑥. In the initial state 𝜌p𝑛1, 𝑛2q is

true, and the fact CHCs are merged trivially, by conjoining the constraints.
Two CHCs, fibp𝑛1, 𝑥1q Ð 𝑥1 “ 1, 𝑛1 ă 2 and fibp𝑛2, 𝑥2q Ð fibp𝑛2 ´ 1, 𝑥12q, fibp𝑛2 ´

2, 𝑥22q, 𝑥 “ 𝑥12 ` 𝑥22, 𝑛2 ě 2, which have three applications of fib, are matched respectively
to Fig. 1(a): the edge between nodes fibp𝑛1, 𝑥1q and fibp𝑛2 ´ 1, 𝑥12q is identified because the
following implication holds:

$ 𝑛1 ă 2^ 𝑛2 ě 2^ . . . ùñ
`

p𝑛1 ă 2^ 𝑛2 ă 2q _ 𝑛2 ě 𝑛1 ùñ p𝑛1 ă 2^ 𝑛2 ´́́ 1 ă 2q _ 𝑛2 ´́́ 1 ě 𝑛1

˘

the second edge between nodes fibp𝑛1, 𝑥1q and fibp𝑛2 ´ 2, 𝑥22q is identified similarly:

$ 𝑛1 ă 2^ 𝑛2 ě 2^ . . . ùñ
`

p𝑛1 ă 2^ 𝑛2 ă 2q _ 𝑛2 ě 𝑛1 ùñ p𝑛1 ă 2^ 𝑛2 ´́́ 2 ă 2q _ 𝑛2 ´́́ 2 ě 𝑛1

˘

The next case is trickier since two non-fact CHCs are matched (Fig. 1(b)). Thus, there are
four applications of fib; two edges need to be identified, and there are four candidates for them.
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We proceed with connecting fibp𝑛1 ´ 1, 𝑥11q to either fibp𝑛2 ´ 1, 𝑥12q or fibp𝑛2 ´ 2, 𝑥22q. There
are two formulas. The first one holds:

$ 𝑛1 ě 2^ 𝑛2 ě 2^ . . . ùñ
`

p𝑛1 ă 2^ 𝑛2 ă 2q _ 𝑛2 ě 𝑛1 ùñ p𝑛1 ´ 1 ă 2^ 𝑛2 ´́́ 1 ă 2q _ 𝑛2 ´́́ 1 ě 𝑛1 ´ 1
˘

while the second one does not hold (e.g., on 𝑛1 “ 𝑛2 “ 3):

$ 𝑛1 ě 2^ 𝑛2 ě 2^ . . . ùñ
`

p𝑛1 ă 2^ 𝑛2 ă 2q _ 𝑛2 ě 𝑛1 ùñ p𝑛1 ´ 1 ă 2^ 𝑛2 ´́́ 2 ă 2q _ 𝑛2 ´́́ 2 ě 𝑛1 ´ 1
˘

These checks are enough to identify the only edge between the synchronized applications
fibp𝑛1´1, 𝑥11q and fibp𝑛2´1, 𝑥12q (Fig. 1(b), upper part). By exclusion, we identify the remain-
ing edge between the synchronized applications fibp𝑛1 ´ 2, 𝑥21q and fibp𝑛2 ´ 2, 𝑥22q (Fig. 1(b),
lower part).

Finally, we match one non-fact CHC and one fact CHC (Fig. 1(c)). There are two formulas
which hold because of the contradicting premises, thus identifying both edges:

$ 𝑛1 ě 2^ 𝑛2 ă 2^ . . . ùñ
`

p𝑛1 ă 2^ 𝑛2 ă 2q _ 𝑛2 ě 𝑛1 ùñ p𝑛1 ´ 1 ă 2^ 𝑛2 ă 2q _ 𝑛2 ě 𝑛1 ´ 1
˘

and

$ 𝑛1 ě 2^ 𝑛2 ă 2^ . . . ùñ
`

p𝑛1 ă 2^ 𝑛2 ă 2q _ 𝑛2 ě 𝑛1 ùñ p𝑛1 ´ 2 ă 2^ 𝑛2 ă 2q _ 𝑛2 ě 𝑛1 ´ 2
˘

7 Evaluation

We evaluated our transformation on a set of challenging systems of CHCs originated from the
relational verification tasks over functional programs. Our transformation is implemented on
top of the Rosette/Unbound verifier for Racket code. We compare it to the CHC transforma-
tion based on the folding / unfolding rules implemented in the VeriMAPrel [3] tool designed
to handle C code. Since our goal is to compare performance of constrained Horn solving only,
we use the model checking tools to produce and to transform the CHCs (by giving equivalent
programs in Racket and C, respectively, as input to the tools). Finally, we use the off-the-shelf
Horn solver, Spacer3 [12], to check satisfiability of both systems using the PDR engine over
linear integer arithmetic (LIA).

We use 47 benchmarks over LIA (crafted and adapted from [3]) and 23 benchmarks over
lists.1 Since the underlying solver does not support the theory of lists yet, we rely on Rosette/
Unbound to over-approximate systems of CHCs from lists to LIA. Intuitively, lists are ab-
stracted by sequences of nondeterministically treated integer variables. That is, whenever a list
element appears in the body of some rule, it is replaced by a fresh integer symbol. To support
synchronization of several iterators over the same list, we explicitly propagate equalities of the
heads and the tails to the product CHCs, and thus we decrease the level of nondeterminism in
the transformed system. For all our examples, this abstraction was shown expressive enough to
prove the properties of interest, such as the one shown in Ex. 4. We refer the reader to consider
the Racket code of our benchmarks for more details.

The result of the experimental comparison is shown in Fig. 2. Each point in the scatterplot
represents a pair of CHC solving runs for the same benchmark: after the product transformation

1The tool and the benchmarks can be found at https://github.com/dvvrd/rosette.

353

https://github.com/dvvrd/rosette


Synchronizing Constrained Horn Clauses Mordvinov and Fedyukovich

10´2 10´1 100 101 102

10´2

10´1

100

101

102

After the product transformation

A
ft

er
fo

ld
in

g
/

u
n
fo

ld
in

g

Figure 2: Solving the transformed systems of CHCs (sec).

(x-axis) and after applying the folding / unfolding rules (y-axis). Most of the original systems
were not solvable before the transformation. Our approach outperforms the competitor in all
but 4 cases. The transformed systems of CHCs appeared to be linear more often than the
competing systems (however, we do not guarantee that the result of our transformation is small
in general). Note that in most of the cases, our transformed systems were solved within a second,
while for the corresponding competing system, the transformation was either unsupported, or
the solving exceeded a timeout. That said, some of the performance gap can be justified also
by the gap between the imperative and functional semantics of the programming languages
(i.e., the same programs can be encoded using loops or recursion) and the low-level encoding
routines hidden in the VeriMAPrel and Rosette/Unbound tools. In future, it would make
sense to implement the folding / unfolding rules on top of the Rosette/Unbound framework
and perform a more fair comparison with the synchronous product transformation.

8 Conclusion

We presented an approach to transform non-linear systems of CHCs by synchronizing recurrent
computations. The approach is based on the notion of the CHC product that defines the
strategies of replacing individual relation symbols and rules in the system of CHCs by fresh,
joint relation symbols. Our transformation results in smaller systems of CHCs (compared to the
systems transformed by the classical folding / unfolding rules) and enables their fast satisfiability
checking by the external constrained Horn solver. We integrated the transformation in the
Rosette/Unbound tool for verifying functional programs and empirically showed that it
performs well on a set of non-trivial programs handling lists and linear arithmetic.

Acknowledgments. We are grateful to Fabio Fioravanti for insightful discussions and for
providing the access to the VeriMAPrel tool. The work is supported in parts by the SNSF
Fellowship P2T1P2 161971 and the CCC Postdoc Best Practices award from the NSF grant
CCF-1136996.
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