
Verifying Safety of Functional Programs with
Rosette/Unbound

Dmitry Mordvinov1 and Grigory Fedyukovich2

1 Saint-Petersburg State University, Department of Software Engineering, Russia,
dmitry.mordvinov@se.math.spbu.ru

2 University of Washington Paul G. Allen School of Computer Science &
Engineering, USA, grigory@cs.washington.edu

Abstract. The goal of unbounded program verification is to discover
an inductive invariant that safely over-approximates all possible pro-
gram behaviors. Functional languages featuring higher order and recur-
sive functions become more popular due to the domain-specific needs of
big data analytics, web, and security. We present Rosette/Unbound,
the first program verifier for Racket exploiting the automated constrained
Horn solver on its backend. One of the key features of Rosette/Unbound
is the ability to synchronize recursive computations over the same inputs
allowing to verify programs that iterate over unbounded data streams
multiple times. Rosette/Unbound is successfully evaluated on a set of
non-trivial recursive and higher order functional programs.

1 Introduction

Rapid growth in data sciences, web, and security opens the new dimensions for
functional programming languages [5]. Due to streaming processing over “big
data”, applications to program synthesis and to the design of domain specific
languages (DSLs) impose extra safety requirements in the unbounded setting.
This makes the ability to discover inductive invariants crucial and necessitates
the proper support by the verification tools. We present Rosette/Unbound,
a new formal verifier for Racket3, whose most distinguishing feature is the tight
connection to the solver of constrained Horn clauses (CHC) offering an auto-
mated decision procedure aiming to synthesize safe inductive invariants.

Rosette/Unbound is available in the interactive mode of the DrRacket
IDE4, allowing the users to verify the programs without detracting from coding.
It uses a symbolic execution engine of the Rosette [23, 24] tool (thus, sharing
a part of the name with it), but it implements a conceptually different encod-
ing strategy and relies on a conceptually different constraint solving paradigm.
Furthermore, it features a support of unbounded symbolic data type of lists,
which would be impossible in Rosette due to its bounded nature, but is still
compatible with the existing bounded reasoning.
3 https://docs.racket-lang.org/
4 https://docs.racket-lang.org/drracket/

ar
X

iv
:1

70
4.

04
55

8v
1 

 [
cs

.S
E

] 
 1

5 
A

pr
 2

01
7



Yet another key feature of Rosette/Unbound is the ability to verify multiple-
pass list-manipulating programs through automatic deriving so called synchronous
iterators. While treating each element of a list nondeterministically, our tool en-
sures that it is accessed by all list iterators exactly once and exactly at the
same time. We empirically show that this program transformation allows to ef-
fectively verify non-trivial safety properties (e.g., the head of a sorted list of
integers is always equal to its minimal element). To the best of our knowledge,
Rosette/Unbound is currently the only tool featuring such functionality.

The paper is structured as follows. Sect. 2 describes the workflow of Rosette/
Unbound and lists the most important features of the tool, which allow it to
verify a program in Sect. 3. Sect. 4 reports on the empirical evaluation of the
tool, and finally Sect. 5 outlines the closest tools and concludes the paper.

2 Tool Overview

From a distance, Rosette/Unbound implements the workflow exploited by the
SMT-based unbounded model checkers [10, 15, 8, 11, 6, 7, 14]. As an intermediate
representation of the verification condition, it uses a system of constraints in
second order logic which encode the functional program in Racket including
the assertion specifying a safety property. While the functionality of solving the
system of constraints is entirely due to the external solver, Rosette/Unbound
contributes in an efficient way of constructing the solvable systems.

Like Rosette, the first steps of Rosette/Unbound are the symbolic exe-
cution of the program, symbolic merging of states in the points where branches
of the control flow join [24], and transforming the user code by adding some sys-
tem routines’ calls for tracking its execution. This results in a compact symbolic
encodings of separated acyclic parts of the program (thus acting close enough
to the Large Block Encoding [2]) and ensures that no information about them
is lost. Then, Rosette/Unbound uses the individual encodings for generating
concise systems of constrained Horn clauses (CHCs). Unlike Rosette, our tool
explicitly maintains the call graph and a set of uninterpreted relation symbols 𝑅,
and for each function 𝑓 that has not been encoded yet, it creates a fresh symbol
𝑓𝑟 and inserts it to 𝑅.

For every (possibly merged) execution branch of 𝑓 , called with 𝑖𝑛, the tool
creates the following implication, the premise of which is the conjunction of first-
order path conditions 𝜑 and the nested function calls 𝑓𝑖 outputting the values
𝑜𝑢𝑡𝑖 (i.e., return values and/or state mutations) produced in this branch for 𝑖𝑛𝑖:

𝑓𝑟p𝑖𝑛, 𝑜𝑢𝑡q,Ð 𝜑, 𝑓𝑟1p𝑖𝑛1, 𝑜𝑢𝑡1q, . . . , 𝑓𝑟𝑛p𝑖𝑛𝑛, 𝑜𝑢𝑡𝑛q (1)

The verification condition with assumptions 𝑝𝑟𝑒 and requirements 𝑝𝑜𝑠𝑡 for a
piece of program calling functions 𝑓1, . . . , 𝑓𝑚, is translated into:

𝑓𝑎𝑙𝑠𝑒Ð 𝑝𝑟𝑒, 𝑓𝑟1p𝑖𝑛1, 𝑜𝑢𝑡1q, . . . , 𝑓𝑟𝑚p𝑖𝑛𝑚, 𝑜𝑢𝑡𝑚q, 𝑝𝑜𝑠𝑡 (2)

We refer to an implication of form either (1) or (2) as to constrained Horn
clause. A system of CHCs serves as a specification for synthesis of inductive

2



invariants, and it is called solvable if there is an interpretation of symbols in 𝑅
making all implications (1) or (2) true. Rosette/Unbound uses off-the-shelf
Horn solver to obtain solutions for the system of CHCs it produces. The default
Horn solver used by Rosette/Unbound is Spacer3 [15], but it is also possible
to switch to Z3 [9].

In the rest of the section, we describe the implementation details and the
outstanding features of Rosette/Unbound.

Multiple user-specified assertions. Each Racket function may contain nu-
merous implicit and explicit assertions. The call of verify/unbound at some
point of symbolic execution creates a system of CHCs by encoding all possible
program executions up to that point as (1), and encodes so called main asser-
tions (specified with arguments of verify/unbound) as (2). Rosette/Unbound
gradually propagates assertions from the function bodies and conjoins them with
the main assertions: thus, to find a bug, our tool needs to find a violation of at
least one of all assertions.

Mutations and global variables. Global state accessed and mutated in the
body of function 𝑓 is added as an extra argument to relation 𝑓𝑟. Rosette/
Unbound obtains a symbolic encoding of the mutations performed by arbitrary
(possibly, mutually recursive) functions. One important feature is that unused
global state is excluded from the encoding, keeping relations compact even for
large programs.

Higher order functions. Racket allows manipulating functions as arguments
to another functions, the feature common to functional programming languages.
To encode a higher order function to CHCs, Rosette/Unbound needs a par-
ticular assignment 𝐴 to its arguments and an assignment to the arguments of all
other higher order function appearing among 𝐴. This way, Rosette/Unbound
performs a so called higher order inlining whose goal is to instantiate all func-
tional arguments with their particular meaning. Thus, each new application of
a higher order function is treated as a unique new function, necessitating the
creation of a fresh uninterpreted relation symbol in 𝑅 and constructing a set of
separate CHCs.

Unbounded symbolic lists. Rosette/Unbound introduces the unbounded
symbolic data type of lists and supports built-in operations over lists (including
the length, head, tail, iterators, mapping and appending functions whose out-
puts are the tailored symbolic constants). However, Rosette/Unbound also
supports a partially specified lists (e.g., it allows to cons a symbolic list and a
concrete head). The data type of symbolic lists is useful while verifying properties
about list iterators (e.g, using a higher order function 𝑓𝑜𝑙𝑑). That is, while an
element is accessed in each iteration over the symbolic list, it is treated nondeter-
minstically. It has its negative side effect while dealing with multiple traversals
over the same list. Indeed, nondeterminism relaxes the fact that both traversals
are conducted over the same list.

Nondeterminism modulo synchronization. We compensate this weakness
by merging the individual iterators over lists and producing a new CHC system

3



fold-map.rkt

1 #lang rosette/unbound
2 ; functions over integers:
3 (define/typed (inc/typed x) (~> integer? integer?) (+ x 1))
4 (define/typed (+/typed x y) (~> integer? integer? integer?) (+ x y))
5 ; nondeterministically treated list:
6 (define-symbolic xs (listof integer?))
7 ; assertion requiring multiple list traversals:
8 (verify/unbound (assert (= (+ (foldl +/typed 0 xs) (length xs))
9 (foldl +/typed 0 (map inc/typed xs)))))

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

sumpℓ1, 𝑎𝑐𝑐1, 𝑟𝑒𝑠1q Ðℓ1 “ 0, 𝑟𝑒𝑠1 “ 𝑎𝑐𝑐1

sum
`1
pℓ2, 𝑎𝑐𝑐2, 𝑟𝑒𝑠2q Ðℓ2 “ 0, 𝑟𝑒𝑠2 “ 𝑎𝑐𝑐2

sumpℓ1, 𝑎𝑐𝑐1, 𝑟𝑒𝑠1q Ðsumpℓ1 ´ 1, 𝑎𝑐𝑐1, 𝑟𝑒𝑠
1
1q, ℓ1 ą 0, 𝑟𝑒𝑠1 “ 𝑟𝑒𝑠

1
1 ` ℎ𝑑1

sum
`1
pℓ2, 𝑎𝑐𝑐2, 𝑟𝑒𝑠2q Ðsum

`1
pℓ2 ´ 1, 𝑎𝑐𝑐2, 𝑟𝑒𝑠

1
2q, ℓ2 ą 0, 𝑟𝑒𝑠2 “ 𝑟𝑒𝑠

1
2 ` ℎ𝑑2 ` 1

K Ðsumpℓ, 0, 𝑟𝑒𝑠1q, sum`1
pℓ, 0, 𝑟𝑒𝑠2q, ℓ ě 0, 𝑟𝑒𝑠1 ` ℓ ‰ 𝑟𝑒𝑠2

$

’

’

’

’

&

’

’

’

’

%

sumspℓ1, 𝑎𝑐𝑐1, 𝑟𝑒𝑠1, ℓ2, 𝑎𝑐𝑐2, 𝑟𝑒𝑠2q Ðℓ1 “ 0, 𝑟𝑒𝑠1 “ 𝑎𝑐𝑐1, ℓ2 “ 0, 𝑟𝑒𝑠2 “ 𝑎𝑐𝑐2

sumspℓ1, 𝑎𝑐𝑐1, 𝑟𝑒𝑠1, ℓ2, 𝑎𝑐𝑐2, 𝑟𝑒𝑠2q Ðsumspℓ1 ´ 1, 𝑎𝑐𝑐1, 𝑟𝑒𝑠
1
1, ℓ2 ´ 1, 𝑎𝑐𝑐2, 𝑟𝑒𝑠

1
2q,ℎ𝑑1 “ ℎ𝑑2

ℓ1 ą 0, ℓ2 ą 0, 𝑟𝑒𝑠1 “ 𝑟𝑒𝑠
1
1 ` ℎ𝑑1, 𝑟𝑒𝑠2 “ 𝑟𝑒𝑠

1
2 ` ℎ𝑑2 ` 1

K Ðsumspℓ, 0, 𝑟𝑒𝑠1, ℓ, 0, 𝑟𝑒𝑠2q, ℓ ě 0, 𝑟𝑒𝑠1 ` ℓ ‰ 𝑟𝑒𝑠2

Fig. 1: Higher order verification with Rosette/Unbound: a given program, the inter-
mediate and ultimate encoding.

to be solved instead of the original one. In the lower level, it requires adding the
extra synchronization constraints that equates the elements at the same position
of the same list while being accessed by different iterators. The similar reasoning
is exploited for proving relational properties over numeric recursive programs
(e.g., monotonicity of the factorial). This transformation is proven sound in our
previous work [17].

3 Running Example

We illustrate the Rosette/Unbound workflow on an example. Consider
a higher order functional program in Fig. 1 (upper). It features two lists of
integers: xs and (map inc/typed xs). The latter is created from xs by adding
1 to each element of xs. Then, the program performs two traversals and sums
all the elements of each list: (foldl +/typed 0 . . .). We want to verify that
the difference between the results of those summing iterations is exactly equal
to (length xs).

4



Rosette/Unbound creates a verification condition as a system of CHCs
over linear arithmetic. There are two main encoding stages:

1. Creating individual CHCs for all list iterators:
‹ (foldl +/typed 0 xs) ÞÑ sumpℓ1, 𝑎𝑐𝑐1, 𝑟𝑒𝑠1q,
‹ (foldl +/typed 0 (map inc/typed xs)) ÞÑ sum

`1pℓ2, 𝑎𝑐𝑐2, 𝑟𝑒𝑠2q.
Each call to a higher order function is “inlined” into a set of CHCs. Despite
there are two calls of the same function fold, they are encoded separately as
they get different functions as parameters. Note that the other higher order
functions (e.g., map), if they are used only as parameters to some other higher
order functions, are not encoded as separate CHCs. The system obtained as
a result after this step is shown in Fig. 1 (central).

2. Synchronizing the CHCs using xs:
‹ sumpℓ1, 𝑎𝑐𝑐1, 𝑟𝑒𝑠1q’sum`1pℓ2, 𝑎𝑐𝑐2, 𝑟𝑒𝑠2q ÞÑsumspℓ1, 𝑎𝑐𝑐1, 𝑟𝑒𝑠1, ℓ2, 𝑎𝑐𝑐2, 𝑟𝑒𝑠2q.

Importantly, in this step, an equality over lists heads is implanted to the
constructed system. The ultimate system (with the implanted equality in
bold) is shown in Fig. 1 (lower). The key insight behind the system is that all
reasoning is reduced to a single computation over a single nondeterministic
list: each iteration accessing the head is shared among the original iterators.

Finally, Rosette/Unbound automatically passes the ultimate system of CHCs
to the external solver and waits while the solving is delivered.

4 Evaluation

We evaluated our tool on a set of functional programs challenging for verification,
i.e., (1) programs performing computations in non-linear arithmetics (e.g., mono-
tonicity of powers, relational properties of div, mod, and mult operations, etc.)
expressed as recursive functions using only linear arithmetics, (2) programs with
recursive and mutually recursive functions performing mutations of variables,
(3) programs with higher order functions, and (4) programs asserting complex
properties of a nondeterministic symbolic list, due to its multiple (explicit or
implicit) traversals.
Comparison with MoCHi. Since there is no unbounded verifier for Racket,
we compared our tool with MoCHi [14], a state-of-art verifier of OCaml pro-
grams. Both tools also use constrained Horn solving in their verification backend.
We translated the benchmark set of MoCHi to Racket and symmetrically trans-
lated our benchmark set to OCaml. The common features of Rosette/Unbound
and MoCHi include the support of programs with recursion, linear arithmetics,
lists. However, contrary to the current revision of Rosette/Unbound, MoCHi
supports algebraic data types and exceptions handling. Thus, making Rosette/
Unbound work for the remaining MoCHi’s benchmarks is left for our future
work.

All benchmarks that we managed to translate for our tool were correctly
solved. On the other hand, 6 of our benchmarks contain programs with muta-
tions that not yet supported by MoCHi. For 9 of 12 supported programs with

5



Rosette/Unbound’s benchmarks MoCHi’s benchmarks
Rosette/Unbound 30/30, 0.087/0.115 sec 40/54, 0.075 sec
MoCHi 10/30, 0.475 sec 54/54, 0.227/0.590 sec

Table 1: The overall statistics. A ratio in the first position of each cell corresponds
to the solved and the total numbers of benchmarks from the corresponding set. The
first value in the second position stands for the average time of solving the opponent’s
benchmarks. The second value (if any) in the second position stands for the average
time on all benchmarks.

bugs, MoCHi managed to find a counterexample. However, only for 1 of 12
safe programs, MoCHi managed to prove its correctness (which is significantly
harder than searching for a finite counterexample). For 11 others, either a time-
out was reached or an internal error occurred. Table 1 shows the brief statistics
of our evaluation.5

5 Closing Remarks

Verification of functional languages is typically based on type inference [18, 12,
25, 22, 4]. Our tool implements an orthogonal, SMT-based approach which is na-
tive also for the Dafny [16], Leon [21], and Zeno [20] induction provers. None of
those approaches has an completely automated CHC solver on its backend. In
contrast, CHC solvers are exploited by the model checkers for imperative lan-
guages [10, 15, 8, 11], dataflow languages [6, 7], and functional programming lan-
guages [14]. Our work makes another functional programming language, rapidly
becoming more popular, communicate with an external CHC solver.

One of the main contributions of our Rosette/Unbound is the support
of new unbounded data type of symbolic lists. Furthermore, the ability to im-
plicitly merge recursive functions over the same input data make Rosette/
Unbound the first program verifier which is able to successfully deal with pro-
grams that iterate over unbounded data streams multiple times. To confirm this
claim, Rosette/Unbound was successfully evaluated on a set of non-trivial
recursive and higher order functional programs.

Applying Rosette/Unbound to functional program synthesis [1, 13, 19, 3]
is the next step of our future work. Indeed, the support of multiple-pass list
manipulating programs also enables writing “universally quantified” program
specifications. It would be also interesting to see how the discovered inductive
invariants could be encoded as the first class entities and be a part of the exe-
cutable Racket code.

5 The complete table can be found in Appending A.

6



References

1. A. Albarghouthi, S. Gulwani, and Z. Kincaid. Recursive program synthesis. In
CAV, volume 8044 of LNCS, pages 934–950. Springer, 2013.

2. D. Beyer, A. Cimatti, A. Griggio, M. E. Keremoglu, and R. Sebastiani. Software
Model Checking via Large-Block Encoding. In FMCAD, pages 25–32. IEEE, 2009.

3. G. Fedyukovich and R. Bodík. Approaching Symbolic Parallelization by Synthesis
of Recurrence Decompositions. In SYNT, EPTCS, pages 55–66, 2016.

4. P. Fu, E. Komendantskaya, T. Schrijvers, and A. Pond. Proof relevant corecursive
resolution. In FLOPS, volume 9613 of LNCS, pages 126–143. Springer, 2016.

5. M. Gaboardi, S. Jagannathan, R. Jhala, and S. Weirich. Language based verifi-
cation tools for functional programs (dagstuhl seminar 16131). Dagstuhl Reports,
6(3):59–77, 2016.

6. P. Garoche, A. Gurfinkel, and T. Kahsai. Synthesizing modular invariants for
synchronous code. In HCVS, volume 169 of EPTCS, pages 19–30, 2014.

7. P. Garoche, T. Kahsai, and X. Thirioux. Hierarchical State Machines as Modular
Horn Clauses. In HCVS, volume 219 of EPTCS, pages 15–28, 2016.

8. A. Gurfinkel, T. Kahsai, A. Komuravelli, and J. A. Navas. The SeaHorn Verification
Framework. In CAV, volume 9206 of LNCS, pages 343–361. Springer, 2015.

9. K. Hoder and N. Bjørner. Generalized property directed reachability. In SAT,
volume 7317, pages 157–171. Springer, 2012.

10. H. Hojjat, F. Konecný, F. Garnier, R. Iosif, V. Kuncak, and P. Rümmer. A veri-
fication toolkit for numerical transition systems - tool paper. In FM, volume 7436
of LNCS, pages 247–251. Springer, 2012.

11. T. Kahsai, P. Rümmer, H. Sanchez, and M. Schäf. Jayhorn: A framework for
verifying java programs. In CAV, Part I, volume 9779 of LNCS, pages 352–358.
Springer, 2016.

12. G. Kaki and S. Jagannathan. A relational framework for higher-order shape anal-
ysis. In ICFP, pages 311–324. ACM, 2014.

13. E. Kneuss, M. Koukoutos, and V. Kuncak. Deductive program repair. In CAV,
volume 9207 of LNCS, pages 217–233. Springer, 2015.

14. N. Kobayashi, R. Sato, and H. Unno. Predicate abstraction and CEGAR for
higher-order model checking. In ACM, pages 222–233. ACM, 2011.

15. A. Komuravelli, A. Gurfinkel, and S. Chaki. SMT-Based Model Checking
for Recursive Programs. In CAV, volume 8559 of LNCS, pages 17–34, 2014.
https://bitbucket.org/spacer/code/branch/spacer3.

16. K. R. M. Leino. Dafny: An automatic program verifier for functional correctness.
In LPAR, volume 6355 of LNCS, pages 348–370. Springer, 2010.

17. D. Mordvinov and G. Fedyukovich. Synchronizing Constrained Horn Clauses. In
LPAR, EPiC Series in Computing. EasyChair, 2017.

18. C. L. Ong and S. J. Ramsay. Verifying higher-order functional programs with
pattern-matching algebraic data types. In POPL, pages 587–598. ACM, 2011.

19. N. Polikarpova, I. Kuraj, and A. Solar-Lezama. Program synthesis from polymor-
phic refinement types. In PLDI, pages 522–538. ACM, 2016.

20. W. Sonnex, S. Drossopoulou, and S. Eisenbach. Zeno: An automated prover for
properties of recursive data structures. In TACAS, volume 7214 of LNCS, pages
407–421. Springer, 2012.

21. P. Suter, A. S. Köksal, and V. Kuncak. Satisfiability modulo recursive programs.
In SAS, LNCS, pages 298–315. Springer, 2011.

7



22. N. Swamy, C. Hritcu, C. Keller, A. Rastogi, A. Delignat-Lavaud, S. Forest, K. Bhar-
gavan, C. Fournet, P. Strub, M. Kohlweiss, J. K. Zinzindohoue, and S. Z. Béguelin.
Dependent types and multi-monadic effects in F˚. In POPL, pages 256–270. ACM,
2016.

23. E. Torlak and R. Bodík. Growing solver-aided languages with Rosette. In Onward!,
pages 135–152. ACM, 2013.

24. E. Torlak and R. Bodík. A lightweight symbolic virtual machine for solver-aided
host languages. In PLDI, pages 530–541. ACM, 2014.

25. N. Vazou, E. L. Seidel, R. Jhala, D. Vytiniotis, and S. L. P. Jones. Refinement
types for haskell. In ICFP, pages 269–282. ACM, 2014.

8



A Raw Experimental Data

benchmark name MoCHi Rosette/
Unbound

ack 0.096 0.063
a-cppr 2.298 NI
a-init 3.441 NI
a-max-e 0.684 0.063
a-max 0.687 0.062
copy_intro 0.159 0.177
e-fact 0.096 0.058
e-simple 0.060 0.017
fact-not-pos-e 0.067 NI
fact-not-pos 0.110 NI
fold_div-e 0.084 0.118
fold_div 0.152 0.136
fold_fun_list 0.114 NI
fold_left 0.224 0.085
fold_right 0.160 0.085
forall_eq_pair 0.417 NI
forall_leq 0.398 0.091
harmonic-e 0.078 0.146
harmonic 0.144 0.141
hors 0.072 0.092
hrec 0.102 NI
intro1 0.059 0.031
intro2 0.060 0.031
intro3 0.058 0.021
isnil 0.121 0.054
iter 0.122 0.091
length 0.141 0.059
l-zipmap 0.104 0.118
l-zipunzip 0.119 NI
a-max 0.068 0.079
mc91-e 0.078 0.049
mc91 0.441 0.056
map_filter 10.951 NI
map_filter-e 0.934 NI
mem 0.191 0.090
mult-e 0.096 0.048
mult 0.147 0.055
neg 0.066 0.022
nth0 0.175 0.095
nth 0.534 0.115
repeat-e 0.065 0.050
reverse 0.281 0.102
risers 1.435 NI
r-file 1.476 0.135
r-lock-e 0.070 0.082
r-lock 0.062 0.089
search-e 0.385 0.028
search 0.659 0.032
sum-e 0.064 0.049
sum_intro 0.386 0.050
sum 0.083 0.049
tree_depth 0.164 NI
zip 1.601 NI
zip_unzip 1.023 NI

(a) on MoCHi benchmarks [14]

benchmark name Rosette/
Unbound

MoCHi

div-jumps-e 0.100 1.443
div-jumps 0.103 EOT
fold-append-e 0.108 EOT
fold-append 0.120 EOT
fold-eq-e 0.113 EOT
fold-eq-minus-e 0.111 0.134
fold-eq-minus 0.117 EOT
fold-eq 0.106 EOT
fold-map-abs-e 0.130 0.749
fold-map-abs 0.121 EOT
fold-mutations-e 0.171 NI
fold-mutations 0.196 NI
heads-sum-e 0.072 EOT
heads-sum 0.076 EOT
length-append-e 0.036 0.401
length-append 0.019 EOT
length-append-simpl-e 0.035 0.978
lucas-vs-fib-e 0.134 0.073
lucas-vs-fib 0.160 EOT
map-fold 0.125 EOT
mod-div-mult-e 0.101 <1?6

mod-div-mult 0.160 EOT
mutual-recursion-e 0.064 NI
mutual-recursion 0.084 NI
power-monotone-e 0.122 0.125
power-monotone 0.282 EOT
single-fold-e 0.056 0.134
single-fold 0.063 0.239
sorted-e 0.163 NI
sorted 0.187 NI

(b) on Rosette/Unbound benchmarks

Fig. 2: Verification statistics

Tables 2b and 2a gather statistics on all benchmarks Rosette/Unbound
was successfully evaluated. The benchmarks with the names ending with -e are
buggy, so an error trace is expected from the verifier. All other benchmarks are

6 The provided error trace was correct, but, due to an internal error, no execution
time was reported.

9



safe. Two columns of numbers represent execution times (in seconds) in case
when the verification process ended successfully by the two competing tools.
NI means that some feature required for verification of the benchmark is not
implemented in corresponding tool (see Sect. 4). EOT denotes that tool terminated
with an error or timeout was reached.

Note that the timing were collected on the different machines. We ran Rosette/
Unbound on Intel(R) Core(TM) i5-6200U CPU @ 2.30GHz, 2 cores, 8 GB RAM.
No desktop version of MoCHi is publicly available, and thus we we able to ran it
only at the web interface (http://www.kb.is.s.u-tokyo.ac.jp/~ryosuke/mochi/),
and unfortunately its characteristics are not known to us.

B Running Rosette/Unbound via DrRacket

10


