
http://www.diva-portal.org

Postprint

This is the accepted version of a paper presented at CAV 2016, July 17–23, Toronto, Canada.

Citation for the original published paper:

Kahsai, T., Rümmer, P., Sanchez, H., Schäf, M. (2016)
JayHorn: A framework for verifying Java programs.
In: Computer Aided Verification (pp. 352-358). Springer
Lecture Notes in Computer Science
https://doi.org/10.1007/978-3-319-41528-4_19

N.B. When citing this work, cite the original published paper.

Permanent link to this version:
http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-309991



JayHorn: A Framework
for Verifying Java programs

Temesghen Kahsai1, Philipp Rümmer2, Huascar Sanchez3, and Martin Schäf3

1 Nasa Ames / CMU
2 Uppsala University
3 SRI International

Abstract. Building a competitive program verifiers is becoming cheaper.
On the front-end side, openly available compiler infrastructure and opti-
mization frameworks take care of hairy problems such as alias analysis,
and break down the subtleties of modern languages into a handful of
simple instructions that need to be handled. On the back-end side, theo-
rem provers start providing full-fledged model checking algorithms, such
as PDR, that take care looping control-flow.

In this spirit, we developed JayHorn, a verification framework for Java
with the goal of having as few moving parts as possible. Most steps of the
translation from Java into logic are implemented as bytecode transfor-
mations, with the implication that their soundness can be tested easily.
From the transformed bytecode, we generate a set of constrained Horn
clauses that are verified using state-of-the-art Horn solvers. We report
on our implementation experience and evaluate JayHorn on benchmarks.

1 Introduction

Building a software model checking tool has always been a strenuous endeavor.
Established tools, such as CBMC [11] or Java Pathfinder [9] have amassed count-
less man-hours of engineering and testing. However, over the recent years, this
task has become a lot simpler with the increasing availability of off-the-shelf
front-ends such as LLVM [13], Wala [1], or Soot [20], and verification back-ends
such as Z3 [5], Corral [12], or Eldarica [18].

With the increasing availability of such tools, the task of building a software
model checker becomes just a matter of picking a front-end and a back-end
and writing the glue code to connect them. Recent verification competitions
have shown that this approach is feasible in practice. Tools like SMACK [17] or
SeaHorn [8] which use LLVM as a front-end and off-the-shelf verification back-
ends have been able to outperform established tools in many categories.

Motivated by these developments, we have implemented JayHorn, a software
model checking tool for Java. JayHorn uses the Java optimization framework Soot
as a front-end, generates a set of constrained Horn clauses (CHCs) to encode
the verification condition. The Horn clauses are then sent to a Horn engine. For
the construction of JayHorn we made the following design decisions:



2 Temesghen Kahsai, Philipp Rümmer, Huascar Sanchez, and Martin Schäf

1. Perform as much of the translation work as possible in Soot: Translation of
exception handling, de-virtualization, and control-flow simplification are im-
plemented as bytecode transformation. These steps do not alter a programs
behavior which allows us to use Randoop [16] to test their correctness.

2. Keep the glue code that generates verification conditions small, modular,
and extensible: by performing many steps as bytecode transformation, the
step of generating verification conditions becomes relatively simple and is
implemented in a few hundred lines of Java code. The implementation is
modular and extensible to allow, for example, different encoding of memory
or numeric types.

3. Keep the back-end exchangeable: Horn solvers are constantly improving and
new tools are being released frequently. To ensure that JayHorn builds on
the most efficient back-end, we made it modular and replaceable. Currently,
JayHorn supports Z3 and Eldarica as back-ends but can be easily extended
to support other tools.

Roadmap. In Section 2 we discuss the architecture of JayHorn in more detail
and address issues such as soundness and limitations. In Section 3 we evaluate
JayHorn on a set of benchmarks. Then we conclude and discuss our next steps.

2 Architecture of JayHorn

In the following, we discuss architecture, soundness, and limitations of JayHorn.
The big picture is outlined in Figure 1. In it’s default configuration, JayHorn
takes Java bytecode as input and checks if any Java assert can be violated.

JayHorn accepts any input that is accepted by Soot. That is, Java class files,
Jar archives, or Android apk’s. For code that is not annotated with assert

statements, JayHorn also provides an option to guard possible NullPointer-

Exceptions, ArrayIndexOutOfBoundsExceptions, and ClassCastExceptions

with assertions (note that this affects soundness because developers may catch
these exceptions on purpose even though it is not good practice).

Soot converts the given input into the Jimple intermediate format, which is
a three-address code version of the Java bytecode. The benefit of operating on
Jimple is that we only have to handle 15 different operations instead of over 200
as in the case of raw bytecode.

Program transformation. We use the Soot infrastructure to apply (and imple-
ment) a set of bytecode transformations to simplify the input program. First,
we eliminate exception handling and make all implicit exceptional control-flow
explicit. To that end, we introduce a global variable (i.e., a public class with one
public static field) to hold the last thrown exception. A thrown exception is then
transformed into an assignment to this variable followed by a return (for primi-
tive types we return a minimal values, for all other types we return null). After
each method call, we first check if this exception variable has been set and, if so,
ignore the return value and move control to the exceptional successor of the call



JayHorn: A Framework for Verifying Java programs 3

Fig. 1. Architectural overview of JayHorn. The tool takes Java bytecode as input. It
then uses Soot to perform a set of transformations that do not alter the input/output
behavior of the program, followed by an abstraction step to simplify arrays. The trans-
formed bytecode is passed to JayHorn’s glue code that constructs a system of CHCs
which are passed into a Horn engine to check the safety of the input program.

statement. At the end of each entry point (e.g., main), we check if the exception
variable has been set and throw the exception if necessary. This transformation
does not alter the input/output behavior of the transformed program.

In the next step, we simplify the input program further by replacing switch

statements by if statements and by removing unreachable code. In this step, we
also add a public field dyntype to each class that carries the dynamic type of an
object and set this field every time an object is created with new. For example, a
Jimple statement A a := new B(); would be followed an assignment a.dyntype
= B.getClass();. Like the previous step, this step does not change the behavior
of the input program.

Then, we de-virtualize the input program. That is, any call to a virtual
method is replaced by a distinction of cases over the dyntype of the base of
that call and calls to the corresponding methods. The de-virtualize can signif-
icantly increase the size of a program but Soot’s built-in alias analysis’ (and
de-virtualization) can be used to reduce the number of cases that need to be
distinguished.

Note that, up to this point, JayHorn has significantly simplified the program
by removing exceptional flow, virtual method calls, and some statements that are
syntactic sugar, without altering the behavior of the input program. Hence, we
can test the correctness (or soundness) of these steps by comparing input/output
behavior of the original and transformed code. Since this step is crucial for the
soundness of the overall system, we employ Randoop [16] to automate this test.
We also allow the user to generate these tests for a given input program to
increase confidence.

Array abstraction. On the simplified input program, JayHorn performs one ab-
straction step to eliminate arrays. Like the previous steps, this step is imple-



4 Temesghen Kahsai, Philipp Rümmer, Huascar Sanchez, and Martin Schäf

mented as a bytecode transformation in Soot and can easily be replaced or
modified if requirements change. Arrays in Java are objects, however, there are
a few subtleties that makes it harder to handle them. For example, access to
the length field of an array is not a regular field access but a special bytecode
instruction. To simplify the generation of CHCs in the next step we transform
arrays into real objects. To that end, we generate a new class for each array
type used in the input program. The class extends Object and has a public field
length and a field elType containing the type of the array elements. For each
element of the array, we generate a private field of appropriate type. For reading
and writing, the array class provides a get and put method with a distinction of
cases over the used index. We can bound the number of fields that are generated
for the array. If the used index exceeds this number, we return a dedicated con-
stant that is later translated into an uninterpreted symbol. This step allows us
to treat arrays like any other object, however, if we bound the number of fields,
it introduces abstraction. Since this step is still a bytecode transformation we
can again use Randoop to check how it affects our precision.

Generating Horn clauses. The transformed program only contains primitive
types and Objects, and a small set of statements, which simplifies the trans-
lation to CHCs; the entire translation takes less than 600 lines of Java code
which keeps the risk of introducing bugs and thus unsoundess low. Our encod-
ing as CHCs is inspired by the concept of refinement types [6, 21], and uses
uninterpreted predicates to represent:

– for each method m, pre-conditions pre_m and post-conditions post_m talking
about parameters and result;

– for each control location l, invariants loc_l talking about local variables
that are in scope;

– for each class C, instance invariants inv_C talking about the dynamic type
and fields of objects.

The translation of programs to clauses then proceeds method by method, map-
ping each instruction to one clause. Accesses to heap and object fields are re-
placed by unpack instructions that apply invariants inv_C to determine the
possible values of fields, and pack instructions that assert instance invariants
after write accesses. Method calls are mapped to clauses that assert the pre-
condition pre_m of the called method, and clauses that exploit the method post-
condition post_m to determine possible results and effects of the call.

Soundness and Completeness. JayHorn is implemented in the spirit of soundi-
ness [14]. Our analysis does not have a fully sound handling of the follow-
ing features: JNI, implicit method invocations, integer overflow, reflection API,
invokedynamic, code generation at runtime, dynamic loading, different class
loaders, and key native methods We have determined that the unsoundness in
our handling of these features has no effect the validity of our experimental eval-



JayHorn: A Framework for Verifying Java programs 5

Benchmark # Problems JayHorn + Z3 JayHorn + Eldarica

3 7 TO 3 7 TO

CBMC-java tests 44 26 12 6 33 8 3

MinePump 64 36 0 28 39 25 0

SVCOMP Recursive 23 7 2 14 14 2 7

Table 1. Evaluation of JayHorn on three sets of benchmarks with Z3 and Eldarica
back-end. For each benchmark problem we record how often JayHorn is able to find the
correct answer (3), how often it fails to prove a correct program (7) and how often the
execution times out after 60 seconds (TO).

uation. To the best of our knowledge, our analysis has a sound handling of all
language features other than those listed above.4

Further, JayHorn over-approximates variables of type double, float, and
long and may over-approximate array usage (as discussed above). Other than
that, completeness mostly depends on the selected back-end.

3 Evaluation

We demonstrate the current capabilities and limitations of JayHorn on a set of
examples. Table 1 show the results of our evaluation. We JayHorn with Eldar-
ica and Z3 as a back-end to three sets of single threaded benchmark problems:
CBMC-java tests, which are simple examples involving a variety of Java con-
structs provided by the authors of CBMC; MinePump, a product line provided
by the authors of CPAChecker, and a Java version of the recursive benchmarks
from SVCOMP 2015. For each benchmark problem we record if a tool produces
the correct answer (3), the wrong answer (7), or times out (TO).

The experiments show that JayHorn is currently able to handle a range of
examples even though some language features are not fully implemented. The
cases where JayHorn fails to produce the expected result (7) are all cases where an
assertion holds but the tool is not able to show it (i.e., JayHorn is sound on these
benchmarks). The wrong results are caused by our current encoding of integers as
mathematical integers, the abstraction of float and double numbers are arbitrary
values, and the missing implementation of bit operations. The experiments also
show the importance of a modular translation: JayHorn performs significantly
better with Eldarica than Z3 which can largely be attributed to our encoding of
programs in CHC. A different encoding might lead to the opposite result.

We tried to compare JayHorn with Java Pathfinder (JPF) as a baseline but
due to different approaches, no comparison was possible. On the MinePump
benchmarks, JPF is significantly faster than JayHorn. On the other two bench-
marks, however, JPF failed since those initialize variables with random number
and as JPF is an explicit state model checker, it fails to enumerate those states.

4 Generated using the Soundiness Statement Generator from http://soundiness.org.

http://soundiness.org


6 Temesghen Kahsai, Philipp Rümmer, Huascar Sanchez, and Martin Schäf

4 Related Work

Fully automated program analysis is a very active research area with many high
quality tools (e.g., [2, 4, 8–11, 15, 17, 19]). The work on JayHorn is primarily in-
spired by the success of SMACK [17] and SeaHorn [8] in the previous verification
competitions.

Currently, not many tools of this kind are available for comparison that target
Java. AProVE [7] and Ultimate [10] competed on termination analysis for Java
programs. During the writing of this paper, the authors of Ultimate, CBMC,
and CPAChecker [3] were actively working on tools for Java (and we would like
to thank them for their test cases and examples) but none of them was available
for a direct comparison with JayHorn. We will make JayHorn and our test cases
and benchmarks publicly available to contribute to this development with the
hope of having a verification competition for Java in the near future.

5 Conclusion

We have presented a new software verification framework for Java in the spirit of
SeaHorn and Smack. JayHorn is continuously evolving. It’s current status does
not yet have any of the amenities needed in industrial practice, such as built-in
specification for common libraries. However, it performs well on a set of well
known verification problems and we are eager to compete with other tools. In
the future, we plan to extend JayHorn to also handle termination.

The main contribution of JayHorn is its modular design. The front-end phase
of JayHorn significantly simplifies the input program without changing its be-
havior which makes it easy to develop new analysis tools on top of this front-end.
Further, JayHorn can connect to different tools that accept Horn clauses as input
which can serve as an interesting benchmark.

Acknowledgement This work is funded in parts by AFRL contract No. FA8750-
15-C-0010, NSF Award No. 1422705, and the Swedish Research Council.

References

1. T.j.watson library for analysis (wala). http://wala.sf.net.

2. D. Beyer, T. A. Henzinger, R. Jhala, and R. Majumdar. The software model
checker blast: Applications to software engineering. Int. J. Softw. Tools Technol.
Transf., 9(5):505–525, Oct. 2007.

3. D. Beyer and M. E. Keremoglu. Cpachecker: A tool for configurable software
verification. In CAV, CAV’11, pages 184–190, Berlin, Heidelberg, 2011. Springer-
Verlag.

4. L. Cordeiro, B. Fischer, and J. Marques-Silva. Smt-based bounded model checking
for embedded ansi-c software. In ASE, pages 137–148, Washington, DC, USA,
2009. IEEE Computer Society.

5. L. de Moura and N. Bjørner. Z3: An efficient SMT solver. In TACAS, 2008.

http://wala.sf.net


JayHorn: A Framework for Verifying Java programs 7

6. T. Freeman and F. Pfenning. Refinement types for ml. In Proceedings of the ACM
SIGPLAN 1991 Conference on Programming Language Design and Implementa-
tion, PLDI ’91, pages 268–277, New York, NY, USA, 1991. ACM.

7. J. Giesl, M. Brockschmidt, F. Emmes, F. Frohn, C. Fuhs, C. Otto, M. Plücker,
P. Schneider-Kamp, T. Ströder, S. Swiderski, and R. Thiemann. Proving termina-
tion of programs automatically with aprove. In IJCAR, pages 184–191, 2014.

8. A. Gurfinkel, T. Kahsai, A. Komuravelli, and J. A. Navas. The seahorn verification
framework. In CAV, pages 343–361, 2015.

9. K. Havelund and T. Pressburger. Model checking java programs using java
pathfinder. International Journal on Software Tools for Technology Transfer,
2(4):366–381, 2000.

10. M. Heizmann, D. Dietsch, J. Leike, B. Musa, and A. Podelski. Ultimate automizer
with array interpolation (competition contribution). Baier, C., Tinelli, C. eds,
pages 454–456, 2015.

11. D. Kroening and M. Tautschnig. CBMC - C bounded model checker - (competition
contribution). In TACAS, pages 389–391, 2014.

12. A. Lal, S. Qadeer, and S. K. Lahiri. A solver for reachability modulo theories. In
CAV, pages 427–443, Berlin, Heidelberg, 2012. Springer-Verlag.

13. C. Lattner and V. Adve. Llvm: A compilation framework for lifelong program
analysis & transformation. In CGO, pages 75–, Washington, DC, USA, 2004.
IEEE Computer Society.

14. B. Livshits, M. Sridharan, Y. Smaragdakis, O. Lhoták, J. N. Amaral, B.-Y. E.
Chang, S. Z. Guyer, U. P. Khedker, A. Møller, and D. Vardoulakis. In defense of
soundiness: A manifesto. Communications of the ACM, 58(2):44–46, 2015.

15. A. Nutz, D. Dietsch, M. M. Mohamed, and A. Podelski. Ultimate kojak with
memory safety checks. In TACAS, pages 458–460. Springer Berlin Heidelberg,
2015.

16. C. Pacheco and M. D. Ernst. Randoop: Feedback-directed random testing for java.
In OOPSLA, pages 815–816, New York, NY, USA, 2007. ACM.

17. Z. Rakamarić and M. Emmi. SMACK: Decoupling source language details from
verifier implementations. In A. Biere and R. Bloem, editors, CAV, volume 8559 of
Lecture Notes in Computer Science, pages 106–113. Springer, 2014.

18. P. Rümmer, H. Hojjat, and V. Kuncak. Disjunctive interpolants for horn-clause
verification. In Proceedings of the 25th International Conference on Computer
Aided Verification, CAV’13, pages 347–363, Berlin, Heidelberg, 2013. Springer-
Verlag.

19. F. Spoto. The nullness analyser of julia. In LPAR, pages 405–424, 2010.
20. R. Vallée-Rai, L. Hendren, V. Sundaresan, P. Lam, E. Gagnon, and P. Co. Soot -

a Java Optimization Framework. In CASCON, 1999.
21. N. Vazou, P. M. Rondon, and R. Jhala. Abstract refinement types. In M. Felleisen

and P. Gardner, editors, ESOP 2013, pages 209–228, Berlin, Heidelberg, 2013.
Springer Berlin Heidelberg.


	JayHorn: A Framework for Verifying Java programs

