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Introduction
Graph-structured data models are widely used in many scientific applica-
tion domains [17] such as social network analytics [3], biological knowledge
graph management [16], and static code analysis [8]. One of the main advan-
tages of this model over the relational data model is that obtaining informa-
tion about the relationship between objects is very fast. The relationships
between nodes are not calculated during query execution but stored in the
model itself. One of the most common tasks associated with analyzing data
represented by graphs is searching for paths. In graph databases queries
are used for paths analysis. The natural way of specifying it is to impose
restrictions on paths between vertices.
One can express such queries by defining formal grammar over an al-

phabet of edge labels. A path belongs to the language specified by the
formal grammar if the language contains the word obtained by concatenat-
ing the edge labels of the given path [21]. Most often, with this approach,
regular grammar is taken. For example, one of the most common graph
databases Neo4j uses a declarative language called Cypher as a query lan-
guage. It supports path constraints in terms of regular languages. It is
noteworthy that Cypher supports regular constraints only partially, and at
this moment its query language is quite limited and it does not provide
sufficient expressive power in a variety of domains. One way to extend the
expressiveness of queries is by using constraints in terms of context-free
languages. Context-free path queries strictly extend the expressive power
of regular path queries for sophisticated graph analytics and thus this is
suitable a wider class of problems. One of these problems is the same-
generation query. In bioinformatics, the aim of such queries is to determine
paths between species in a genealogical database where the species are at
the same level in the species-subspecies hierarchy. The query is expressible
in terms of context-free languages, but there is no way to express it in terms
of regular expressions [18].
Despite the fact that the problem of context-free paths querying is well

studied and a lot of algorithms were proposed [2, 5, 12, 15], there are still
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a number of problems associated with its applicability in the analysis of
real data. The most critical problems are the poor performance of existing
algorithms on real-world data and bad integration with real-world graph
databases and graph analysis systems [7]. These problems hinder the adop-
tion of CFPQ.
The problem with the performance of CFPQ algorithms in real-world

scenarios was pointed out by Jochem Kuijpers [7] as a result of an attempt
to extend the Neo4j graph database with CFPQ. The number of the state
of the art methods for CFPQ processing were selected [18, 11, 14, 6]. The
authors implemented them using Neo4j as a graph storage and evaluated
them. The results of comparison of measured performance showed that
these solutions are not able to cope with large graphs as found in practice.
One of the implemented methods uses matrix representation to get the

information about reachability in a given graph. This method was proposed
by Rustam Azimov in [6] and is based on matrix operations. Since the per-
formance problem was pointed out, it was shown that this algorithm demon-
strates good performance enough. Moreover, the matrix-based CFPQ al-
gorithm has become the base for the first full-stack support of CFPQ by
extending the RedisGraph graph database.
Matrix representation is not the only one way to express CFPQ algo-

rithms. Moreover, research shows that basic parsing algorithms that accept
string and grammar can be straightforwardly generalized for graph input [9].
For example, there are efforts that describe how the CFPQ problem can be
solved by using a generalized LL analyzer or a generalized LR analyzer.
It is worth noting that such an approach allows getting information not
only about reachability in the graph but also solves all paths problem [13].
However, such practical cases of getting information about reachability and
paths are not studied enough.
The combination of these factors motivates further research and imple-

mentation of new solutions. On the other hand, there exists the recent
development of the CFPQ problem [1] integrated with the Neo4j graph
database1. This is the adaptation of the classic Generlized LL parsing al-

1Github repository of modificated GLL algorithm: https://github.com/YaccConstructor/iguana, last
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gorithm for execution of context-free queries on graphs. It is important to
note that the resulting algorithm supports the entire class of context-free
languages. The modified GLL algorithm, just like the original one, returns
information not only about reachability between vertices, but also infor-
mation for reconstructing the paths themselves. A special data structure
is used for this purpose called Shared Packed Parse Forest (SPPF). How-
ever, this data structure consumes a significant amount of resources and,
as a result, leads to worse performance of the entire algorithm. In practice,
the limitations on processor resources are quite significant, and the paths
themselves are not always required: it would be enough to obtain only in-
formation about their existence. What is more, there is no investigation on
providing parallel solutions based not on linear-algebra-oriented algorithms.
In the multi- and many-core world and the big data era, it is important to
provide a parallel solution for CFPQ.
Thus, the aim of this work is to provide an implementation of the GLL

algorithm to graph handling for both the all paths and the reachability
scenarios. Then, it is planned in this work to make an evaluation of the pro-
posed solution to investigate whether significant performance improvements
could be achieved.

accessed: 05/05/2022
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1 Problem statement
The aim of the work is to improve the implementation of the GLL-based
CFPQ algorithm and to measure the performance of provided implemen-
tation on real-world graphs. In order to achieve the aim, the following
objectives have been set.

• To analyze and refactor the code of the current implementation of
the GLL-based CFPQ algorithm for identifying and eliminating per-
formance problems.

• To provide an ability to solve both, the reachability CFPQ problem
and all paths CFPQ problem.

• To evaluate the resulting algorithm on real-world graphs and to com-
pare it with the existing one.
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2 Related work & background
This section includes basic notation and definitions in graph theory and
formal language theory which are used in this work. Also, the further
description of both the theoretical part of the GLL-based CFPQ algorithm
and its implementation are provided.

2.1 Basic Definitions of Formal Languages
In this work, the context-free grammars are used as path constraints, thus
context-free languages and grammars are defined in this subsection.
A context-free grammar is a tuple G = ⟨N,Σ, P, S⟩, where

• N is a finite set of nonterminals

• Σ is a finite set of terminals, N ∩ Σ = ∅

• P is a finite set of productions of the form A → α, where A ∈ N, α ∈
(N ∪ Σ)∗

• S ∈ N .

We use the conventional notation A ⇒∗ w to denote, that a word w ∈ Σ∗

can be derived from a non-terminal A using some sequence of production
rules from P .
A context-free language is a language generated by a con-text-free gram-

mar G:

L(G) = {w ∈ Σ∗ | S ⇒∗ w}

2.2 Basic Definitions of Graph Theory
In a simplified way, the Neo4j graph database uses a labeled directed graph
as a data model. It can be defined as follows.
Labeled directed graph is a tuple D = ⟨V,E, T ⟩, where
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• V is a finite set of vertices. For simplicity, we assume that the vertices
are natural numbers from 0 to |V | − 1.

• T is a set of labels on edges.

• E ⊆ V × T × V is a set of edges.

Path π in the graphD = ⟨V,E, T ⟩ is a finite sequence of edges (e0, e1, ..., en−1),
where ∀ j, 0 ≤ j ≤ n− 1 : ej = (vj, tj, vj+1) ∈ E.
We denote the set of all paths in the graph D as π(D).

2.3 Context-free Path Querying
Now, we can define context-free path querying problems. Let be:

• a context-free grammar G = ⟨N,Σ, P, S⟩;

• a directed graph D = ⟨V,E, T ⟩, where V is the set of vertices of the
graph, E ⊆ V × T × V is the set of edges, T ⊆ Σ is the set of labels
on edges, where each label is a terminal symbol of the grammar G;

• a set of start vertices VS ⊆ V and final vertices VF ⊆ V .

Consider a path in the graph D:

π = (e0, e1, · · · , en−1),

where ek = (vk, tk, vk+1), ∀ k, 0 ≤ k ≤ n− 1 ek ∈ E. To path in the graph
the word l(π) = t0t1 · · · tn1

is associated — the concatenation of the labels
on the edges of this path.
In the introduced notation, the following problems can be formulated.

• The problem of a path querying in a graph with context-
free constraints consists in finding all paths in the graph such that
l(π) ∈ L(G) and v0 ∈ VS, vn ∈ VF .
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• The problem of reachability in a graph with context-free con-
straints consists in finding a set of pairs of vertices for which there
is a path with a beginning and an end at these vertices, such that the
word composed of labels of the edges of the path belongs to the given
language: {(vi, vj) | ∃ l(π) ∈ L(G) and v0 ∈ VS, vn ∈ VF}.

It should be noted that it is often necessary to identify complex depen-
dencies in a graph data model. So, according to the context and application
area, both variants of the above problems are of practical importance.
For each problem there are two variants of set of starting vertices: the

set may consist of all vertices of a graph or may consist only a particular
vertices of interest. The first variant is called all-pairs context-free path
querying problem and the second is called a multiple-source (and a single-
source as a partial case) context-free path querying problem.

2.4 Generalized LL Parsing Algorithm
One of the common parsing techniques is the LL(k) algorithm [10], that
performs top-down analysis with a lookahead. It means that the decision
about which production of the grammar should be applied is based on
looking at the k following character from the current one. To choose the
right production rule at this step algorithm supports a parsing table, where
the information for parsing the current non-terminal is stored. However,
it can be applied only to a subset of the context-free grammars class and
does not support ambiguous context-free grammars or grammars with left
recursion in derivation.
Top-down analysis algorithms are relatively easier to implement and

debug, because it fully matches the structure of the grammar. For this
reason, to extend the parsing power of above-mentioned technique there
was proposed [19] the generalized LL (GLL) algorithm. Also GLL can
handle ambiguous grammars. In case of LL(k) algorithm may arise the
situation when it is impossible to determine which production should be
applied in the current state of the parsing process [4]. To solve this issue
the GLL algorithm maintains a queue of descriptors. Each descriptor is a
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structure that describes the current state of the analyzer. Thus, using a
queue of descriptors allows one to consider all possible transitions during
the operation of the parser.
The parsing table for the generalized GLL algorithm can store multiple

alternatives for parsing the current non-terminal. In this case, descrip-
tor duplication can occur. For efficient storage and reuse of many differ-
ent descriptors, GLL uses a specific structure — Graph Structured Stack
(GSS) [22].
To represent the result, GLL provides the Shared Packed Parse For-

est (SPPF) structure [20], which contains all derivation trees for all paths
satisfying the specified language.

2.5 GLL-based CFPQ Algorithm
As it was showed, classical GLL parsing technique can be used to solve
context-free language constrained path problem. It means that such tech-
nique can be used to proceed graph input. Previously, the algorithm was
generalized from linear input to graph processing, as was described in [9].
To do this, the following modifications were proposed.

• A query has became a triple: a set of initial vertices, a set of final
vertices, and a grammar.

• An initial set of descriptors must include all the start vertices of the
graph.

• At the step of transition to the next character, it is necessary to
support all possible transition options that correspond to all outgoing
edges of the vertex.

• If parsing is completed, it is necessary to check whether the final
vertex in the parsing belongs to the set of final vertices of the graph.

The described principles of the generalized GLL algorithm are important
for understanding the features of its implementation, which will be described
below.
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The implementation of the algorithm is based on the Iguana project
which is written in Java. This library provides the modified GLL algorithm.
The advantage of Iguana project is that it uses a more efficient GSS for GLL
parsing. In addition, it does not affect the worst-case cubic run time and
space complexities of GLL parsing.
Under this work, it is important to pay attention to the following changes

that were made to the workflow of the GLL algorithm to unable graph
processing.

• In order to support graph processing, the abstraction of an input data
was changed. The new implementation of the Input interface has been
added. Now it is represented as a graph adjacency list, a set of start
and final vertices of the resulting paths.

• There can be multiple start vertices for a graph input, unlike a linear
input. So, also the initialization of the descriptor queue was modified.
In case of processing a descriptor with slot (N → α.xβ), where x is
a terminal, the nextSymbols method was used. It took an index i in
the input string and returns an index j such that the substring of the
input string from i to j − 1 matches x. Thus, j is the index in the
input string from which the parsing should continue by going to the
slot (N → αx.β). Considering the graph input there can be several
similar positions. Therefore, the signature of this method has been
changed. Now it returns a list of identifiers.

As far as the original GLL is aimed to handle arbitrary context-free
grammars, this solution can handle arbitrary grammars too. It makes the
solution less restrictive with regard to a query specification language, thus
being more user-friendly.
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3 Algorithm modification
This section will outline some important problems of current implementa-
tion and proposed solutions.

3.1 Research motivation
There were experiments of GLL-based CFPQ algorithm implementation
carried out on real graphs. The experiment analysis showed that the algo-
rithm demonstrated a good performance in most cases. It means that it is
the right way in solving the problem of searching for paths in a graph with
context-free constraints.
However, sometimes in the single source scenario an unexpected dete-

rioration in the behavior of the resulting solution was revealed. Since the
cause of performance problems remained unclear, as part of this work, it
was decided to repeat experiments on a wider set of queries. These exper-
iments of the extended GLL algorithm showed that queries for some start
vertex sets take an abnormally long time to complete compared to other
queries of the same type.
To sum up, despite of the efficiency showed by the algorithm, the behav-

ioral problems call into a question its applicability in practice in the form
in which it exists.

3.2 Problems and its solution
This subsection describes the changes made to the algorithm implementa-
tion to improve its performance and to eliminate the identified problems.
First of all, the solution was profiled with Java Flight Recorder (JFR).

The results showed that the largest amount of CPU time is spent in the main
class method Neo4jGraphInput — nextSymbols. This method is used to
map the current input to a grammar terminal. It takes a vertex and returns
a list of labels (symbols) on the outgoing edges. At the same time, in order
to obtain these labels, it is necessary to reach out to the Neo4j database.
The Native Java API provides a convenient way to do this: to get an iterator
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over the set of outgoing edges using the getRelationships.iterator()
method. However, in the current implementation, almost all CPU time is
spent on calculations within the database.
It should be noted that after the input matching with the terminal, it

is possible that not all labels will be used in the further execution of the
algorithm. Saving all the data leads to a huge overhead (up to a heap
overflow) in case when degree of the vertex is very big, and most of the
labels are discarded after matching. Thus, it is necessary to optimize the
transfer of labels from the database to further processing. The following
solution was proposed.
A common and reasonable solution to this problem is using the Stream

API. Stream in Java is a sequence of elements supporting sequential and
parallel aggregate operations. In other words, it is not a data store, but an
interface to the source, from where elements are taken only when they are
needed. One scenario for using threads as the return type of a method is
as follows. In the called method, one must specify the processing of objects
using one or more intermediate operations, and in the calling method, the
final operation. The nextSymbols method has been rewritten to accom-
modate this scenario for all input types. Now the data source is the Neo4j
database, the intermediate operation is filtering edges by labels, and the fi-
nal operation is getting labels from the stream returned by the nextSymbols
method. Thus, in this method, stream processing of data was provided.
The modified algorithm was tested and re-profiled. The profiling re-

sults confirmed that the changes made to the nextSymbols method were
correct and, thus, the problem of the algorithm’s slowing was eliminated.
Moreover, it will be demonstrated in Experimental Study section that the
optimizations generally affected the speed of the algorithm in a positive
direction.

3.3 Functionality extension
This section describes the changes that have been made to the algorithm
for solving the reachability CFPQ problem.
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Extended GLL algorithm returns SPPF. It contains all derivations trees
for all paths which satisfy to language constraints. So there is provided a
natural solution for the all paths CFPQ problem. But in practice, the re-
strictions on processor resources are very significant, while restoring the
paths themselves is not always required. Often it is enough to obtain only
information about its existence. Accordingly, there was added a switch that
allows one to not to create SPPF in case when only reachability informa-
tion. SPPF is needed only for paths reconstruction, so if one wants to get
only reachable pairs, SPPF construction can be omitted, which leads to
performance improvements and memory consumption decreasing.

Figure 1: Architecture of the solution

The main parts of the solution are presented in figure 1. To handle
the scenario when SPPF construction is omitted almost all architecture el-
ements were changed. The green color in this diagram marks the classes
and methods that have been changed at this stage of the work. Iguana
Runtime takes an Input and a context-free Grammar to produce the Result.
The Result is a key entity which should or should not contain SPPF infor-
mation. Input abstracts a data structure with the ability to get the next
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symbols for the given position. One example of Input is Graph, in which
the position is a vertex, and the next symbols are the labels of its outgoing
edges. There was provided to use different forms of graph representation.
Communication with the database is done using the Neo4j Native Java API.
The way to create a database was changed. Now an embedded database is
used. It means that it runs inside of the application and it is not used as
an external service as it was earlier. Worth noting, the architecture is ex-
tensible, and one can provide their own implementation of Graph to enable
context-free path querying for a new graph storage.
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4 Experimental study
To assess the applicability of the proposed solution the number of scenarios
with real-world graphs and queries were evaluated. In this section, the
evaluation of the resulting algorithm is described.

4.1 Hardware
All experiments were run on server with following characteristics.

• Operating system Ubuntu 18.04.

• Processor Intel Core i7-6700 CPU, 3.40GHz, 4 threads (hyper-thread-
ing is turn off).

• DDR4 64Gb RAM.

• Java HotSpot(TM) 64-Bit server virtual machine(build 15.0.2+7-27,
mixed mode, sharing). JVM was configured to use 55Gb of heap
memory.

• Neo4j version 4.0.3. Almost all configurations of Neo4j are default.

4.2 Datasets
The experimental study was carried out on the graphs from CFPQ_Data2
data set. There was selected a number of graphs related to RDF analysis, as
well as a number of graphs extracted from the Linux sources which related to
static code analysis problems. A detailed description of the graphs, namely
the number of vertices and edges and the number of edges labeled by tags
used in queries, is in table 1 and table 2.
All queries used in the evaluation are variants of same-generation query.

For the RDF graphs were used the same queries as in the other works for
CFPQ algorithms evaluation: G1 (1), G2 (2), and Geo (3). The queries are

2CFPQ_Data is a public set of graphs and grammars for CFPQ algorithms evaluation. GitHub reposi-
tory: https://github.com/JetBrains-Research/CFPQ_Data. Accessed: 05/05/2022.
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Graph name |V | |E| #subClassOf #type #broaderTransitive
Core 1 323 2 752 178 0. 0
Pathways 6 238 12 363 3 117 3 118 0
Go hierarchy 45 007 490 109 490 109 0 0
Enzyme 48 815 86 543 8 163 14 989 8 156
Eclass 239 111 360 248 90 962 72 517 0
Geospecies 450 609 2 201 532 0 89 065 20 867
Go 582 929 1 437 437 94 514 226 481 0
Taxonomy 5 728 398 14 922 125 2 112 637 2 508 635 0

Table 1: Graphs for evaluation: number of vertices and edges, and number
of edges with specific label

Graph name |V | |E| #a #d
Apache 1 721 418 1 510 411 362 799 1 147 612
Block 3 423 234 2 951 393 669 238 2 282 155
Fs 4 177 416 3 609 373 824 430 2 784 943
Ipc 3 401 022 2 931 498 664 151 2 267 347
Lib 3 401 355 2 931 880 664 311 2 267 569
Mm 2 538 243 2 191 079 498 918 1 692 161
Net 4 039 470 3 500 141 807 162 2 692 979

Postgre 5 203 419 4 678 543 1 209 597 3 468 946
Security 3 479 982 3 003 326 683 339 2 319 987
Sound 3 528 861 3 049 732 697 159 2 352 573
Init 2 446 224 2 112 809 481 994 1 630 815
Arch 3 448 422 2 970 242 6 712 95 2 298 947
Crypto 3 464 970 2 988 387 678 408 2 309 979
Drivers 4 273 803 3 707 769 858 568 2 849 201
Kernel 11 254 434 9 484 213 1 981 258 7 502 955

Table 2: Graphs for evaluation: number of vertices and edges, and number
of edges with specific label

expressed as context-free grammars where S is a nonterminal, subClassOf,
type, broaderTransitive, subClassOf, type, broaderTransitive are terminals
or the labels of edges. The inverse of an x relation and the respective edge
is denoted as x.

S →subClassOf S subClassOf | type S type
| subClassOf subClassOf | type type

(1)
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S → subClassOf S subClassOf | subClassOf (2)

S →broaderTransitive S broaderTransitive
| broaderTransitive broaderTransitive

(3)

For Program analysis graphs was used a PointsTo query (4) which de-
scribes a points-to analysis [23]. Here M and V are nonterminals, M is
start nonterminal, {a, d, a, d} are terminals.

M → d V d

V → (M? a)∗ M? (a M?)∗
(4)

4.3 The statement of the experiments
To show the usefulness of the proposed implementation the results of mea-
surements were considered in comparison with the original implementation
of the algorithm. The following chunks were taken as start sets:

∀r ∈ R = {1, 2, 4, 8, 16, 32, 50, 100, 500, 1000, 5000, 10000}

V (r) = V1 ⊔ V2 ⊔ · · · ⊔ Vm, ∀1 ≤ i < m : |Vi| = r, |Vm| ≤ r.

The entire set of graph vertices was considered as the final vertices in all
experiments.
Then, the proposed solution was evaluated on the following scenarios:

all-pairs reachability, single source reachability, and single source
all paths. The all-pairs all paths scenario was omitted because its
impracticality: the detailed analysis is often required only for paths within
a specific subgraph, not the entire graph.
For all-pairs reachability scenario there were 5 iterations for each

query. Two out of five iterations were held to warm up Java machine.
Time results of others were used in the evaluation analysis. For single
source reachability and single source all-paths scenarios for each
graph there were created randomized sets of vertices. These sets were used
as the start sets for the corresponding graphs in all appropriate experiments.
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Only algorithm run time was measured. The time spent creating the
database, as well as the grammar loading time, was not taken into account.
To check the correctness of the solution and to force the result stream, the
number of reachable pairs for each query was computed.
To demonstrate the applicability of proposed solution, results for graphs

related to static code analysis were compared to results of Azimov’s CFPQ
algorithm based on matrix operations. The implementation from CFPQ_Py-
Algo repository3 was taken as the implementation of the matrix CFPQ al-
gorithm. This library contains the implementation for both scenarios, all
pairs and single source. To perform matrix operations pygraphblas4 was
used. Pygraphblas is a python wrapper over the SuiteSparse library, which
contains a set of sparse matrix algorithms to provide graph processing in
terms of linear algebra.

4.4 Evaluation Results
First of all, it is necessary to assure that the provided modifications are use-
ful in context of algorithm applicability. To show the difference between the
proposed implementation and the original implementation of the algorithm
the Enzyme graph was used.
Below in fig.2-4 comparative results of time measurements are shown.
Similarly, the median and mean query time for each size of the set of start

vertices are additionally allocated. These results show that the improved
version of the algorithm not only spends an order of magnitude less time
resources, but also is more stable on average on real-world graphs. This is
especially noticeable in Fig.3 which demonstrates the median and average
time. For the modified algorithm these two indicators are almost equal.
The resulting solution was evaluated on the same hardware. Since, after

the optimizations, the amount of consumed processor resources significantly
decreased for both algorithms, it became possible to include the whole RDF
graphs dataset for experimental study. The results of the all-pairs reacha-

3CFPQ_PyAlgo repository: https://github.com/JetBrains-Research/CFPQ_PyAlgo, accessed:
05/05/2022

4pygraphblas repository: https://github.com/Graphegon/pygraphblas, accessed: 05/05/2022
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(a) Query time (b) Median and mean query time

Figure 2: Grammar G1 and Enzyme

(a) Query time (b) Median and mean time

Figure 3: Grammar G2 and Enzyme

(a) Query time (b) Median and mean

Figure 4: Grammar Geo and Enzyme

bility queries evaluation are presented in tables 3 – 5.
The results show that query evaluation time depends not only on a graph
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Graph name G1 G2

time (sec) #answer time (sec) #answer
Core 0,02 204 0,01 214
Pathways 0,07 884 0,04 3117
Go hierarchy 3,68 588 976 5,4 738 937
Enzyme 0,22 396 0,17 8163
Eclass 1,5 90 994 0,98 96 163
Geospecies 2,87 85 2,65 0
Go 5,56 640 316 4,2 659 501
Taxonomy 45,47 151 706 36,07 2 112 637

Table 3: Single thread all-pairs reachability performance results for RDFs:
time in seconds, #answer is a number of reachable pairs

Graph name Geo
time (sec) #answer

Enzyme 5,7 14 267 542
Geospecies 145,8 226 669 749

Table 4: Single thread all-pairs reachability performance results for RDFs:
time in seconds, #answer is a number of reachable pairs

size or its sparsity, but also on an inner structure of the graph. For example,
the relatively small graph Go hierarchy fully consists of edges used in queries
G1 and G2, thus evaluation time for these queries is significantly bigger than
for some bigger but more sparse graphs, for example, for Eclass graph.
Note that the size of the answer is not a good metric, because, for example,
answers for Geo query, and Enzyme and Geospecies graphs, are calculated
faster than the answers for Go hierarchy. The creation of relevant metrics
for CFPQ queries evaluation time prediction is a challenging problem by
itself and should be tackled in the future.
The important results are demonstrated in Table 4. Previous similar

solution required more then 6900 seconds to evaluate the the Geo query for
the Geospecies graph [7]. Thus it shows that the performance of CFPQ for
Neo4j was significantly improved.
The results for graphs related to static code analysis on all-pairs scenario

are presented in Table 5. The sign ’–’ in cells means that the respective
query and graph require a considerable amount of memory during algorithm
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Graph name PointsTo
time (sec) matrix time (sec) #answer

Apache – 536,7 92 806 768
Block 113,01 123,88 53 514 095
Fs 167,73 105,72 9 646 475
Ipc 109,43 79,52 5 249 389
Lib 111,09 121,79 5 276 303
Mm 77,92 84,15 3 990 305
Net 160,64 206,29 8 833 403
Postgre – 969,88 90 661 446
Security 115,75 181,7 5 593 387
Sound 120,14 133,64 6 085 269
Init 87,25 45,84 3 783 769
Arch 130,77 119,92 5 339 563
Crypto 128,8 122,09 5 428 237
Drivers 371,18 279,39 18 825 025
Kernel 614,05 378,05 16 747 731

Table 5: Single thread all-pairs reachability performance results: time in
seconds, #answer is a number of reachable pairs

execution that leads to unpredictable time to get the result. Although other
queries related to code analysis can be evaluated in reasonable time even for
relatively big graphs. Moreover, in some cases GLL-based CFPQ algorithm
demonstrates comparable and even better time results than matrix based
CFPQ algorithm. For example, Security graph is processed approximately
one and a half times faster with GLL-based CFPQ algorithm than with
matrix based CFPQ algorithm. Thus, CFPQ can be used to improve Neo4j-
based code analysis systems.
The another important scenario is the case when the start set is a single

vertex. The results of the single source reachablity and all paths
reachability queries related to RDF analysis are presented in figures 5–7.
The go hierarchy graph is omitted because it fully connected with sub-

ClassOf relation and GLL-based CFPQ algorithm does not handle well the
SPPF construction for such specific case because of memory limits.
Firstly, it should be noted that the single-source queries are reasonably

fast in both the reachability and the all paths cases: median time is
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Figure 5: Single source CFPQ results for queries related to RDF analysis
and G1

Figure 6: Single source CFPQ results for queries related to RDF analysis
and G2

less than 10−4 seconds for reachability queries, and is less than 10−1 seconds
for all paths queries. Even for queries G1 and G2, which return relatively
small answers, time required for the all paths queries is bigger than for
reachability queries. Also there are some ”heavy” cases when both scenarios
require relatively a big amount of time to get the result. Moreover, for such
cases the time for reachability and all-paths is comparable in contra-
diction to others. It should be due to the fact that often in single source
scenario the memory allocation for SPPF construction require relatively
significant amount of time. Thus, there is a noticeable difference between
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Figure 7: Single source CFPQ results for queries related to RDF analysis
and Geo

Figure 8: Single source CFPQ results for queries related to static code
analysis

reachability and all-paths scenarios.
The results of the single source reachablity and all paths queries

related to static code analysis are presented in figure 8. Here is also the
comparison with matrix based CFPQ algorithm. This is perhaps the most
significant result, which shows that as a result of the optimizations, both
the for paths and the calculation of the fact of reachability are orders of
magnitude faster than the execution of the same queries using the matrix
algorithm.
It is noticeable that the execution results are similar to results of the

previous experiment. The execution time for all graphs except Postgre
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graph is less than 102 seconds. Moreover, median time is less than 10−4

seconds for all processing sets.
To conclude, the analysis of the obtained results showed that the mod-

ified GLL algorithm can be effectively used on real-world graphs to solve
the both problems: reachability and all-paths context-free path querying
problems. The obtained results make relevant further research aimed at
both improving this algorithm and implementation, and its full integration
into the Neo4j graph database.
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Conclusion
The following results have been obtained.

• The performance problems in the implementation of the GLL-based
CFPQ algorithm were eliminated.

• The implementation of GLL-based CFPQ algorithm was extended
with ability to solve both, the reachability and the all paths
CFPQ problem.

• The resulting algorithm implementation was evaluated on two sets of
real-world graphs: a number of graphs related to RDF analysis and
a number of graph related to static code analysis problem for both
the all pairs and the multiple sources scenarios. The evaluation
shows that the proposed algorithm is more than 45 times faster than
the previous solution for Neo4j.
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