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Introduction
In the era of big data and high load computations, graphical processing

units (GPUs) are used extensively for data processing. There have even
been designed embedded devices with the support of GPUs for general pur-
pose computations, like image recognition on mobile robots [17]. However,
since many GPU-based applications tend to be bandwidth bound, meaning
that data allocation and access are the main bottlenecks, memory optimiza-
tions appear to be in a prevailing significance and are addressed in a huge
amount of research.
While the problem of available GPU memory could be tackled with

sophisticated memory pooling techniques through memory swapping and
sharing [7], memory architecture of a GPU often requires more sophisti-
cated optimizations. Given that a typical GPU incorporates several memory
types, each having different capacity and throughput, a few memory man-
agement automation techniques have been introduced. They could leverage
more effective memory spaces to handle register spilling and systematically
consider the performance benefit achievable through a specific allocation
of shared memory to save global memory transactions [25, 21]. Further,
the diversity of memory types imposes that each memory access should
satisfy memory type specific patterns, to be most effective. Under the
non-fulfillment of these patterns the data throughput of an application is
aggravated due to the increase in the number of required memory trans-
actions. Considering the following typical scenario of a GPU-accelerated
application, another runtime memory optimization could be proposed.
To facilitate the data processing a GPU routine is executed by multiple

threads simultaneously with different pieces of data, often exceeding the
maximal number of threads that could be executed simultaneously resulting
in blocks of threads being executed iteratively. Being that the input data
often exceeds the available GPU memory, the routine could not be applied
at once, and there is a need to split the data into chunks and process them
iteratively by the routine. It happens that some relatively small properties
within a processing routine are maintained between the iterations and could
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be considered static in that sense. For example, if the application is a
GPU-accelerated data processing engine that allows one to write queries to
data and typically these queries remain small if compared to data and take
significant execution time, the query, once specified by the user, can be used
as a static, i.e. already known and constant, data for the query execution
kernel runtime optimization since it remains unchanged during the host code
execution. This observation allows to apply a partial evaluation technique
to optimize such routines in runtime.
Partial evaluation or program specialization [11, 10] is a program trans-

formation and optimization technique that optimizes a given program with
respect to statically known inputs, producing another program which, if
given only the remaining dynamic inputs, will produce the same results
as initial one would have produced, given both inputs. Basically, a partial
evaluator performs an aggressive unfolding/unrolling, inlining, and constant
propagation. The application of partial evaluation at runtime has recently
shown a significant performance improvement of query execution for CPU-
based database querying [20].
Regarding memory optimizations of GPU kernels, partial evaluation is

able to embed static data memory accesses into the code, i.e. place it
directly into registers, once a kernel is properly written, which could result
in a better performance compared to non-embedded access since memory
transactions would be replaced by accesses to the instruction cache. Thus,
the aim of this work is to provide an empirical evaluation of an existing
partial evaluator AnyDSL [4] that is capable of producing CUDA 1 code
for NVIDIA GPUs to investigate the effects that appear after partially
evaluating GPU applications and what aspects of GPU architecture affect
the desired result and whether any significant performance improvements
could be achieved at all.

1Programming and hardware model by NVIDIA.
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Problem statement
The aim of the work is the practical evaluation of whether any perfor-

mance enhancement could be brought by partially evaluating memory ac-
cesses through the utilization of AnyDSL framework, compared to CUDA
implementations, considering GPU microarchitecture details that affect the
result. In order to achieve the aim, the following objectives have been set.

• Implement experimental scenarios in both AnyDSL and CUDA.

• Collect relevant datasets for the evaluation to be more practical.

• Perform the evaluation and analyze the results.

More specifically, the work performs the evaluation on string match-
ing and convolutional filtering scenarios, providing some relevant CUDA
assembly examples to ground the effects being observed.
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1 Related work & background
This section gives the necessary insights about a typical GPU architec-

ture, performance-related considerations, and differences between compute
capabilities from CUDA perspective, as well as known approaches for mem-
ory optimizations, while also providing the insights about partial evaluation
and its known practical applications.

1.1 Nvidia CUDA

Modern GPUs are highly parallel computational devices equipped with
a very high-bandwidth memory, designed to speed up general-purpose com-
putations. CUDA defines a specific programming model2 and architecture
for NVIDIA GPUs. These details are provided considering Nvidia Tesla T4
GPU.

Hardware architecture Nvidia Tesla T43 GPU is of Turing architec-
ture and constitutes of five Graphics Processing Clusters (i.e. self-contained
GPUs), each including four Texture Processing Clusters that incorporates
two Streaming Multiprocessors (SM) each. Each SM is built up of four pro-
cessing blocks, each including a warp4 scheduler, dispatch unit, and units for
a memory fetch, integer, and floating-point operations, latter being called
CUDA-cores. The GPU includes 2560 of such cores. Further, Tesla is sup-
plied with 16GB GDDR6 memory that supports throughput up to 320GB/s.
Unlike previous architectures it incorporates shared memory in L1 cache,
increasing the bandwidth up to 2x, and adds an independent integer datap-
ath, enabling concurrent execution of integer and floating-point operations.
Finally, Tensor Cores has been introduced, being specialized execution units
specifically for performing the tensor/matrix operations.

2https://docs.nvidia.com/pdf/CUDA_C_Programming_Guide.pdf
(last accessed date: 30.05.2020)

3https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/
turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf (last accessed date: 30.05.2020)

4A batch of 32 CUDA threads
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~16 GB GDDR6 global memory

4096 KiB L2 data cache/L2 constant cache/L2 instruction cache

~46 KiB L1.5 constant cache/L1 instruction cache

2 KiB L1 constant cache96 KiB L1 data cache/shared memory

64 KiB registers 16 KiB L0 instruction cache

Private to every GPU

Private to every processing block

Private to every SM

Figure 1: Nvidia Tesla T4 memory hierarchy [6]

Programing model CUDA implies Single Instruction Multiple Threads
architecture, where each instruction is concurrently executed by multiple
threads, that are combined in blocks, that populates a grid. Threads in a
block are split into warps, which are distributed between warp schedulers on
a single SM, such schedulers assign per-thread instructions to the available
computation units. Hence, in general, threads in a warp should execute
the same instruction to achieve the best performance, in case of different
instructions, caused e.g. by an if-statement, the execution is serialized, this
is called a thread-divergence. A piece of a program that is intended to be
executed on a GPU is called a device kernel and usually is implemented in
CUDA C, where grid and block sizes also could be specified.

Memory hierarchy Any GPU incorporates several memory types, that
serve different purposes and differ in access latency, size, and bandwidth.
The memory architecture of Tesla T4 is depicted in 1.
Global memory is the main resource to transfer data between host and

device. It is the largest and the slowest memory space, cacheable in L1 and
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L2 caches, that have 32 B and 64 B lines respectively. Global memory loads
and stores by threads of a warp are served by the device with 32 B transac-
tions5. Basically, concurrent accesses of the threads in a warp will coalesce
into a number of such transactions necessary to service all the threads in the
warp. So in order to keep the number of such transactions to a minimum,
threads in a warp should access adjacent segments of memory, aligned with
the transaction size, avoiding strided accesses. Such a requirement could
not always be satisfied in practice, thus GPU resources being used not to
its maximum. This memory space is accessible and allocated from the host,
and visible to all the threads in a grid.
Shared memory is on-chip memory (hence it has lower latency and higher

bandwidth than global memory) used to optimize frequent accesses to the
same elements in global memory. It is fast as long as bank conflicts do not
occur. The whole shared memory space is divided into 32 banks — 4 B
memory elements, with successive 4 B words belonging to successive banks.
Any bank has a bandwidth of 4 B per clock cycle. Therefore, any memory
load or store of n addresses, belonging to n distinct memory banks could
be serviced simultaneously with the bandwidth of n times the bandwidth
of a single bank. However, accesses to memory addresses from the same
bank are serialized, decreasing the effective bandwidth in a magnitude of
the number of conflict-free accesses. When multiple threads of a warp access
the same shared memory, a broadcast occurs. Several such broadcasts could
coalesce into a single multicast. This memory space has a visibility scope
of a single thread block and is not accessible from the host.
Constant memory is a cacheable off-chip memory, that is read-only from

the device. It is a 64 KB part of global memory, that has a specific path
for caching. As a result, on a cache miss, a constant memory read costs one
memory read from global memory; otherwise, it is as fast as register access.
When the threads in a warp access different constant memory addresses,
these accesses are serialized. Thus the constant cache is best when the
threads in warp access the same or very few distinct addresses, in the first

5https://docs.nvidia.com/cuda/pdf/CUDA_C_Best_Practices_Guide.pdf (last accessed date:
30.05.2020)
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case the access is broadcasted, and the latency is the same as registers one.
Register memory is on-chip memory, consuming zero extra clock cycles

per instruction, as long as there is no register read-after-write dependencies
and bank conflicts. Is has a scope of a single thread and is the fastest
memory type available.

1.2 Memory optimizations

Given such a sophisticated memory hierarchy that should be managed
by a programmer, memory optimizations are in a great interest. Only auto-
matic memory optimizations would be considered, avoiding the guidelines
about how to rearrange existing access patterns and speed-up the transfer-
ring between host and device.
In cases when abundant data parallelism is hard to achieve, e.g. when

utilizing concurrent data structures and related synchronization primitives
that arbitrate the accesses, dynamic memory allocation, i.e. per-thread
allocation inside the device code, for such data structures becomes a bottle-
neck, hurting the throughput. In [9] a novel approach for dynamic memory
allocation is proposed. It is based on shared data structures, supporting
fine-grained mutual exclusion regions, cooperative synchronization primi-
tives allowing to allocate memory concurrently between the threads, and a
policy of execution delegation. The proposed allocator has a much higher
allocation throughput compared to the one, deployed with CUDA.
Since the register memory is bounded in size, excessive registers6 could

be spilled into the global memory, introducing higher latency. Contrary to
the default CUDA compiler approach, that handles excessive registers via
re-materialization7 as long as possible before spilling, an approach from [21]
advocates the usage of underutilized shared memory to spill the excessive
registers. The approach is implemented as an extra binary translation pass
over CUDA assembly. Under certain conditions, such optimization is worse
than CUDA default approach, thus the authors also provide a compile-time

6When the compiler needs more registers, than available on SM.
7Recomputation of a value instead of loading and storing. It produces the code with lower efficiency,

however with lower register usage as well.
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performance gain estimator, based on collected either explicit or implicit8

instruction stalls, to compare the default code produced by the compiler and
an optimized one, to decide which one is better. On average, this technique
achieves 10% better performance on the selected benchmarks.
Another work is focused at the automatic allocation of shared memory

to reduce the number of global memory transactions [25] for automatically
C-to-CUDA generated programs. Authors propose a performance model,
designed to choose the best configuration for shared memory allocation,
considering estimated execution time, memory metrics, and the number of
reduced global memory transactions. Once the best configuration is found,
it is applied to the original C code by adding specific OpenACC9 pragmas.
To tackle the problem of the lack of available GPU memory, a domain-

oriented memory pooling and swapping is proposed in [7]. Variables not
in use are swapped to host and swapped back before any access, while
variables that have non-overlapping lifetime could be allocated to the same
memory space by the heuristic-driven memory pool. The heuristic is based
on the iterative nature of the deep learning training algorithms to derive
the lifetime and read/write order of all variables.
Despite such a variety of different memory optimization approaches,

none of the presented works exploits possible static nature of device kernel
parameters in any way. Thus, the application of partial evaluation technique
to GPU kernels could provide another optimization approach, oriented at
static data management.

1.3 Partial evaluation

Partial evaluation is a program transformation and optimization tech-
nique, also known as program specialization, first formulated in [13]. A
partial evaluator is an algorithm, that takes a program and some of its
known inputs called static and produces another residual program, one
yielding the same result given the remaining dynamic inputs as the original

8Some stalls are labeled by the compiler, others are deduced, based e.g. on latencies for the memory type
being accessed by the instruction.

9A set of directives for heterogeneous code parallelization
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Partial evaluator 'MIX'

Static input in1

Subject program p

Specialized program pin1Dynamic input in2

Output

Data

Program

Static and dynamic inputs
in1 + in2

Figure 2: Partial evaluation pipeline

program would have produced given all the inputs at once as illustrated in
commutative diagram 2. A partial evaluator performs a mixture of code
generation and execution: it reduces those parts of program p, depend-
ing on in1, and generates code for calculations for yet unavailable in2.
Generally, it performs symbolic computations, unfolding function calls, and
replacement of function calls to their specialized versions. For example, a
partial evaluator for the program in listing 1 reduces the number of static
conditional statements driven by static parameter.
The key idea is that a specialized program requires fewer computations

(through moving them to compile or specialization time), and thus is in-
tended to be more effective. A notable feature of specialization is the abil-
ity to generate a compiled program, once given an interpreter and a source
program, also known as the first Futamura projection [8]. And while many
practical applications benefit from partial evaluation through reducing the
interpretation overhead (either by generating a compiler or exploiting inter-
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pretative nature of a program), there are scenarios, when a program takes
more than one input, and one of the inputs varies more slowly than the
others, thus specialization with respect to less-variable input could produce
a more effective program. Significant speed-up results were reported for
pattern recognition, ray tracing, database querying, and scientific comput-
ing [11].

1 int pow(int x,int n){
2 if (n == 0) return 1;
3 else if (n \% 2 == 0) {
4 return pow2(f(x,n/2));
5 }
6 else return x * f(x,n-1);
7 }
8 //partially evaluating pow(x,5) would yield:
9 int pow(int x){
10 return x * pow2(pow2(x));
11 }

Listing 1: Pow function partial evaluation example
In [22] an annotation-driven partial evaluator for Java programming

language is introduced. The goal is to specialize framework configurations
and quite expensive reflection calls, which are widespread in object-oriented
systems. The replacement of reflective method calls with partially evaluated
ordinary calls allows to speed-up a dynamic pricing system by a power of
six.
In [16] an approach for automatic virtual machine construction is pro-

posed, which allows new languages to be implemented through the spec-
ification of abstract syntax tree interpreter. Partial evaluation is used to
compile hot and stable parts of the already specialized10 interpreter.
Another usage of partial evaluation as a means for compilation has been

described in [20]. The PostgreSQL query interpreter, compiled at first to
LLVM IR, which the designed partial evaluator works with, has been spe-
cialized in runtime with respect to the query, i.e. the query is compiled.
The approach results in rather significant performance improvement, re-
quires fewer efforts compared to just-in-time compiler development and is
10Supplied with runtime information such as types.
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fully automatic.
Despite such a broad variety of partial evaluation- related research, at

the moment of writing, there is a lack of research combining GPGPU and
partial evaluation. In [12] the approach from [16] was adopted to com-
pile code from R language to OpenCL, to make it possible to write GPU-
accelerated applications with dynamic interpreted languages, popular in
big data, ignoring third-party libraries and relatively low-level program-
ming languages for GPU. A metaprogramming system for writing shaders
is presented in [15], which supports partial evaluation via currying. How-
ever, the system is rather outdated and has no relation to modern GPGPU
programming. Furthermore, there are no works dedicated to what benefits
partial evaluation could provide once applied directly to GPU program, or
whether it could provide any at all.

1 handleData (filterParams , data)
2 {
3 res = new List()
4 for d in data
5 for e in filterParams
6 if d % e == 0
7 then res.Add(d)
8 return res
9 }

Listing 2: A typical GPGPU kernel

1 handleData (data)
2 {
3 res = new List()
4 for d in data
5 if d % 2 == 0 ||
6 d % 3 == 0
7 then res.Add(d)
8 return res
9 }

Listing 3: A typical GPGPU kernel specialization with respect to [2;3]
However, in practice, it appears that many GPGPU scenarios could have

static parameters in a sense, theoretically appropriate for specialization. A
typical GPGPU kernel is depicted in listing 2. It often represents some
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kind of a filter, that is applied to different pieces of the data in parallel
by a huge number of threads. The execution time primarily depends on
the size of the data, which often exceeds the available memory of GPU,
therefore the device kernel is run multiple times on different chunks of the
data, resulting in significant execution time. Hence, the filter varies less
frequently than the data and could be considered as a static input and
subjected to specialization. However, the filter becomes known at runtime,
before the kernel actually runs, thus the specialization should be performed
at runtime. The overhead of the partial evaluation could be hidden by the
gained speed-up across the long run of the kernel. Moreover, since one filter
could be applied to different data pieces, the specialized version could be
cached and reused instead of specializing again. The effect of specialization
could be seen in listing 3. The inner cycle with accesses to the memory
space of the filter has been reduced with the filter parameters being placed
directly into the instructions. Since memory access operations have been
proven to be the most expensive, such a replacement could provide a benefit
of accessing the filter from the registers, which is the fastest memory type,
rather than from any other memory space. Furthermore, a partial evaluator
could be able to reduce those parts of the kernel, that depend on static filter
parameters made available.

1.4 AnyDSL framework

To the date of writing, there is no partial evaluator known that works
directly with CUDA C or any of CUDA intermediate representations. As
mentioned, the partial evaluator from [20] works with LLVM IR, and CUDA
has an appropriate LLVM frontend, however, the partial evaluator leverages
special attributes in IR, that conflicts with the ones of CUDA itself during
LLVM JIT compilation. AnyDSL [4] is a framework for the development of
domain-specific libraries that could utilize different backends, including the
one of CUDA. The framework includes a partial evaluator that works with a
specific intermediate representation, supporting CUDA C code generation.
The framework requires the programs to be developed in a special DSL
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named Impala, which resembles C language with functions being the first-
class objects. Since the DSL is very CUDA C alike, the framework has been
chosen as a means for partial evaluation of GPU programs.
The impala compiler translates the code into a functional graph-based

intermediate representation similar to typed lambda calculus with continu-
ations. Such a representation allows Impala to achieve near C performance,
despite higher-order functions support [14]. Partial evaluation is performed
on this level, while the representation could target different hardware ar-
chitectures utilizing LLVM and compiler intrinsics. An example of such an
intrinsic is given in listing 4. The whole function would be first converted
into the intermediate representation, with the parts of the function labeled
with @ partially evaluated, then the device-independent parts of the code
would be translated into LLVM and device code would be translated into
device-specific code, e.g. the code between lines 4-8 would be translated
into CUDA C, which then would be included in LLVM code with a call
to an external function that loads and executes the generated device code,
e.g. the external function for mentioned lines would call NVIDIA CUDA
compiler in runtime and launch the compiled kernel.

1 fn iterate(fld: Field , @body: fn(int, int) -> ()) -> () {
2 let grid = (fld.cols , fld.rows , 1);
3 let block = (128 , 1, 1);
4 cuda(grid , block , || {
5 let x = tid_x() + blockDim_x() * blockId_x();
6 let y = tid_y() + blockDim_y () * blockId_y ();
7 body(x, y);
8 });
9 }

Listing 4: Impala GPU-accelerated loop
The authors of the framework evaluated the effectiveness of partial eval-

uation targeting different backends, including CUDA [4, 23]. The results
show similar performance with hand-tuned third-party implementations.
However, the authors focused on compile-time partial evaluation of kernels
and have not provided any GPU-specific details that affect the success of the
result as well as what particular optimization a partial evaluator performs
with the device code. In contrast, this work is aimed at revealing GPU
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architecture details that affect the success of partial evaluation, focused at
runtime partial evaluation and selects different experimental scenarios.
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2 Experimental setup
In this section, the scheme of runtime partial evaluation is presented as

well as the evaluation configuration.

2.1 Runtime partial evaluation

In practice, it is infeasible to compile a new kernel for each static input
value, which is often known in runtime. Thus the partial evaluation of the
kernel should be performed in runtime as well as the kernel compilation to
a specific GPU target. Each specialized benchmark scenario corresponds
to the sequence in figure 3. The device kernel in Impala is included in
the target application using xxd tool during the compilation. When static
data becomes known at runtime, the kernel wrapper is constructed, that
supplies the static data to the included kernel, creating partially applied
kernel. Then AnyDSL JIT compiler is invoked, which specializes the kernel
according to the annotations provided, and static arguments supplied, gen-

:CMake :Impala
kernel :Kernel	runtime	wrapper

compile

:AnyDSL	JIT

run

:NVRTC:MainApp

run

return

build
xxd

include

supply	static
data

Figure 3: Runtime partial evaluation diagram
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erating CUDA C code, which is then passed to NVRTC 11 and got eventually
compiled to GPU assembly and invoked.
The evaluation aim is to show whether a device kernel could benefit from

data embedding performed by partial evaluation and possible reduction of
static computations. For the data to be embedded, the accesses should
be static, corresponding to constant memory to be a good fit in CUDA
code, thus constant memory being a baseline in several scenarios. Further,
only the execution time of a device kernel should be measured, since, for
example, overhead for partial evaluation and JIT compilation for a device
could be hidden by GPU data transferring or other workarounds.
Since NVRTC is internal to AnyDSL framework, the benchmarking re-

sults could be obtained via nvprof 12 or by utilizing a specially recompiled
version of the framework runtime with CUDA events. The latter option
is used since it allows to perform warm-up runs of the kernel to make the
benchmarking more reliable. The whole system is implemented in C++ and
Python, and enclosed into a Docker container with the datasets indexed in
Git LFS13 for benchmarks to be easily built and run on any system with
NVIDIA GPU 14. The following GPGPU scenarios have been implemented,
which are fit under the described in 1.3 pipeline.

• Naíve single substring matching.

• Naíve multiple substring matching.

• Aho–Corasick matching.

• 2-D convolution filter.

The following system has been used to run the benchmarks: Ubuntu 18.04
with CUDA Toolkit 10.2. hosted in Google Cloud bundled with 4 cores of
Intel Xeon and NVIDIA Tesla T4 GPU.

11https://docs.nvidia.com/cuda/nvrtc/index.html (last accessed date: 30.05.2020)
12https://docs.nvidia.com/cuda/profiler-users-guide/index.html

(last accessed date: 30.05.2020)
13https://git-lfs.github.com/ (last accessed date: 30.05.2020)
14https://github.com/Tiltedprogrammer/spec (last accessed date: 30.05.2020)
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3 Evaluation
In this section, the implementation details of the benchmarks are pro-

vided, as well as the selected datasets, and GPU architecture details that
affect the result.

3.1 String matching

GPU-accelerated string matching frequently appears in GPU-based data-
bases, file carving [19, 5] that stands for extracting files from raw data in a
field of cyber forensics, and intrusion detection [24]. Thus such a problem
has a huge practical interest. Substrings could be considered static and
subjected to partial evaluation.

3.1.1 Naìve single substring matching

Naìve algorithm operates on a subject string and a pattern, iteratively
comparing each symbol of the pattern with the symbols of each substring of
the subject string of size equal to the size of the pattern. The algorithm is
inherently data-parallel: such substrings could be traversed separately, each
in their thread. Further, such a traversal provides a rather optimal global
memory access pattern, since adjacent threads would access addresses of
adjacent substrings. There exist an opportunity for optimization, since at
one moment all threads in a warp access the same symbol of the pattern
(and distinct symbols of the subject string), thus the pattern could be placed
in constant memory to speed up the performance.
There is a KMP test for optimizers like partial evaluator, intended to

check whether they correctly reduce static computations. Partial evalua-
tion is able to reduce a naìve single substring matching, though properly
rewritten, to something very like Knuth–Morris–Pratt algorithm [2], which
uses a prefix function to recover from a mismatch, thus being linear with
respect to the subject string. When a mismatch occurs, it is known that
all previous symbols of the pattern match the ones of the substring of the
subject string up to the point of mismatch. In order to simulate a prefix
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function at the mismatch point, the pattern could be matched against itself
up to this point, searching for the largest prefix being a suffix as well. Since
the pattern is static and matched against itself, this computation is fully
static and could be performed at specialization time. Porting this approach
to GPU and Impala, and applying partial evaluation at runtime indeed
produces a KMP-like program15. Thus, making the used partial evaluator
sound in a sense. The KMP algorithm itself is hard to partially evalu-
ate since the already matched piece of the pattern that drives the search
through the backtracking table is fully dynamic.
However, such an approach is far less data parallel as well as KMP. The

subject string should be divided into interleaved chunks, each assigned to
a different thread. Such parallelization has a far worse access pattern since
each thread accesses strided addresses of the subject string. However, in
practice, such an access pattern occurs when the search is performed across
different subject strings, where each thread operates on a specific string16

A naìve single substring matching could be also specialized by simply
unrolling the traversal, that does not hurt the parallelization. The evalua-
tion of these approaches is presented in figure 4.
The current recursive implementation of the partial evaluator does not

handle well the KMP test with patterns of more than 16 bytes in length.
Thus, for the evaluation, a set of uniformly randomized 50 patterns17 from
two-characters alphabet has been taken, satisfying that restriction. The
subject string has been also randomly generated from the same alphabet.
The standard deviation is shown in gray regions. The KMP algorithm ob-
tained by partial evaluation (kmp_pe), KMP algorithm implemented with
CUDA, utilizing constant memory to store the backtrack table and the pat-
tern (kmp_cuda_const), naìve algorithm in CUDA with chunk-based par-
allelization (naive_cuda_const), naiveìve algorithm in CUDA with char-
based parallelization and its partially evaluated version, that embeds the
pattern into the code through unrolling the traversal, are compared. The
15https://github.com/Tiltedprogrammer/spec/blob/master/kmp.dump

(last accessed date: 30.05.2020)
16https://github.com/NVIDIA/nvstrings (last accessed date: 30.05.2020)
17Enough for the divergence not to affect deviation so much.
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Figure 4: Naìve single substring matching

figure grounds the success of the KMP test and shows that data embedding
does not give any significant improvements: the difference between embed-
ded and not embedded versions are mainly due to the reduced amount of
address computations and loop overhead. The char-based parallel version
is at the bottom due to a better memory access policy.

3.1.2 Data embedding

Partial evaluation for the scenario above performed the transformation
similar to the one in listing 6. While the load/store speed comparison for
memory spaces is well described [6], e.g. non-conflicting constant load is
faster than L1 cache hit, the behavior of such embedded data is unspecified,
but could be deduced as follows. All the arguments of assembly instruc-
tions should be put into registers, even the embedded ones, e.g. NVIDIA
profiler18 is able to tell how much of registers is required to perform an
18https://developer.nvidia.com/nsight-visual-studio-edition (last accessed date: 30.05.2020)
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instruction: MOV R1 0x62 requires two registers, thus embedded data is even-
tually ending up in them. Yet, it is unclear from what memory space the
embedded data is being put. The mini benchmark from listing 5 measures
the number of cycles required to perform an addition operation add.u32 with
one of the arguments passed via embedded value or via constant memory,
lines 9 and 13. Given such a benchmark, the version with the value em-
bedded performs 10 times faster: 42 cycles versus 430 on a constant cache
miss. If the constant cache is firstly warmed up, the latency becomes 42
cycles and is the same for both instructions. Thus, embedded values are
more likely to be accessed via instruction memory, since the instructions
are prefetched and would outperform constant memory access under cache
misses. Notably, when embedding, a partial evaluator is able to generate a
more effective instruction, e.g. shift instead of division, which takes more
than 10 instructions on GPU, while shift requires only one.

1 __constant__ int mini_array [2];
2
3 __global__ void dummy_kernel(int* dst,int* clocks){
4
5 int i;
6 int start,stop;
7
8 asm volatile(”mov.u32 %0, %%clock;”: ”=r”(start) :: ”memory”);
9 asm volatile(
10 ”add.u32 %0, %1, 12 ;\n\t”
11 :”=r”(i) :”r”(i): ”memory”);
12 // vs
13 asm volatile(
14 ”add.u32 %0, %1, %2 ;\n\t”
15 :”=r”(i) :”r”(i), ”r”(mini_array[0] : ”memory”);

16 asm volatile(”mov.u32 %0, %%clock;”: ”=r”(stop) :: ”memory”);
17 }

Listing 5: Memory benchmark
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Figure 5: Naìve multiple substring matching

1 //kmp_cuda_const
2 LDC R0, c[0x3][R0] //loads pattern’s character from constant memory into

register
3 //...//
4 LDG R12, [R2] //loads subject’s character from global memory
5 ISETP.NE.AND P0, R0 , R12 // compares
6 //..//
7 LDC R4, c[0x3][R2] // in case of mismatch goto position in backtrack table
8
9 //kmp_pe
10 LDG R12, [R2] //loads subject’s character from global memory
11 // ...
12 ISETP.NE.AND P0, R12, 0x61 // pattern’s char is put right into the

instruction

Listing 6: KMP partial evaluation
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3.1.3 Naìve multiple substring matching

The core of the algorithm is the same as the one of 3.1.1 with the
addition that a set of patterns is traversed against the substring. Since a
set of patterns is traversed, their sizes are needed to be accessed, in order to
be able to determine the border between the patterns. Constant memory
could be utilized to store the sizes and the patterns, since threads of a
warp access the same size and the same symbol of the pattern. Partially
evaluating the algorithm with respect to the patterns, allows to fully reduce
all the memory accesses to the sizes, which are numerous when the subject
string is huge. Partial evaluation is achieved through loop unrolling for
the sizes and the patterns. The results of this benchmark are presented in
figure 5.
The dataset is from the intrusion detection area, which is common for

multiple pattern matching problems [3]. The subject string is 500MB tcp-
dump from Botnet dataset [27]. The patterns are extracted from Snort V319

rules, which are the patterns containing malicious traffic. The same set of
patterns has been run over 30 times taking the average. The gray area
represents the standard deviation.
Cuda_global is the implementation with global memory for storing the

sizes and the patterns, while cuda_const uses constant memory for this. As
it could be seen, the partially evaluated version is at the very bottom being
2x faster than the version with constant memory. cuda_const_manual is
the implementation, where all size accesses have been reduced manually,
using a CUDA JIT compiler20. It is slower than the partially evaluated
version due to the reasons related to CUDA compiler implementation. In
this case, provided the patterns embedded into the code, the compiler is
able to produce a more efficient code from listing 7, considering the number
of instructions. It could be tempting to embed data of size exceeding a
constant memory pool of 64 KB into code, provided that such access could
be even faster. First, CUDA limits the maximum number of instructions
that could be put into a module by 512 million. Second, compilation time
19https://www.snort.org/downloads (last accessed date: 30.05.2020)
20https://github.com/NVIDIA/jitify
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begins to matter for relatively huge embedded data, e.g. 272 patterns are
5̃KB in size and compilation took several minutes.

1 //Cuda_const_manual
2
3 IMAD.MOV.U32 R8, RZ, RZ, R4
4 ULDC.64 UR4, c[0x0][0x160]
5 IMAD.MOV.U32 R9, RZ, RZ, R3
6 LDG.E.U8.SYS R8, [R8.64+UR4+0x1] // load subject’s character
7 ULDC.U8 UR4, c[0x3][0x1] //load pattern’s character
8 ULOP UR4, UR4, 0xff, URZ, 0xc0
9 IMAD.U32 R11, RZ, RZ, UR4
10 PRMT R11, R11, 0x9910,RZ
11 PRMT R12, R8, 0x9910,RZ
12 ISETP.NE.AND P0, PT, R12, R11, PT //compare
13
14 //partially_evaluated
15
16 IMAD.MOV.U32 R6, RZ, RZ, R2
17 ULDC.64 UR6, c[0x0][0x160]
18 IMAD.MOV U32 R7, RZ, RZ, R5
19 LDG.E.U8.SYS R6, [R6.64 + UR6+0x1] // load subject’s character
20 PRMT R8, R6, 0x9910, RZ
21 ISETP.NE.AND P0, PT, R8, 0x42, PT //compare

Listing 7: Cuda_const_manual vs partially_evaluated

3.1.4 Aho-Corasick matching

Aho-Corasick is a time efficient algorithm for multiple string pattern
matching [3] and based on suffix tree and a failure transition table. However,
a failure transition table becomes redundant by switching to GPU, since a
simple suffix tree traversal per thread for each position in the subject string
appear to be more efficient [1]. The parallel Aho-Corasick first construct a
transition table where final states have numbers less than the starting state,
to reduce memory accesses for checking whether the state is final or not.
The table is stored in global memory and each thread traverses the table
taking a subject string character from shared memory. The benchmark
and the implemented algorithms are presented in figure 6. The dataset
used is the same as in 3.1.3. Cuda_corasick_lib is the implementation of
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this algorithm21 taken from [1]. The transition table is often sparse and
could be embedded into the code during partial evaluation using static
binding of dynamic variables [11] avoiding empty entries, corasick_pe is
the implementation of this approach. Naive_pe is the algorithm from 3.1.3
utilizing shared memory. Cuda_corasick_pe is the implementation, where
a pattern set specific interpreter for the transition table is generated. The
interpreter represents a sequence of code-embedded conditional statements
to traverse the suffix tree.

number of patterns

Figure 6: Aho-Corasick matching

Static binding is a traversal of statically known possible values of a dy-
namic parameter in a bunch of condition statements. In this case, such
an approach induces more thread divergence, e.g. 6 times if compared to
cuda_corasick_lib, which drastically decreases the performance of a GPU
application. The interpreter approach has better divergence behavior but
21https://github.com/pfac-lib/PFAC
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still diverges twice as much as cuda_corasick_lib. So, given that global
memory access latency even on L1 cache hit is more than the one for em-
bedded data, the static binding approach that could work well on a CPU
has a poor performance when a GPU is used, and even if interpretative
implementation is near, such an embedding also does not provide any per-
formance benefit.

3.2 Convolutional filtering
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Figure 7: Separable convolution

Convolutional filtering is a matrix dot product frequently used in im-
age processing [26]. Basically, there are a huge subject matrix and a small
filter matrix, and each submatrix of the subject matrix is dot producted
with the filter matrix. Since the filter is small and is static, the convolution
operation could be partially evaluated with respect to the filter. A partial
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evaluation for a 2-D separable22 convolutional filtering has been performed
in [23], targeting different hardware, however, the described filter is a rewrit-
ten modification of the reference filter, thus the obtained speed-up is not
achieved by means of partial evaluator solely, and is used to demonstrate
the facilities of the Impala language.

3.2.1 Separable convolution

A separable convolutional filter has been implemented in CUDA and
Impala [18]. It operates on a 2-D array in global memory with threads
organized in 32x16 blocks, where each thread convolves 8 elements. Shared
memory is utilized to store the big area for convolution with a block and
the required borders. Since the filter is read-only and accessed equally by
all the threads, it is stored in constant memory. Elements that fall away
the borders of the 2-D subject array are assigned zeroes. There are two
device kernels to perform a convolution: one convolves the rows and the
other convolves the columns with the shared memory padded enough to
not cause bank conflicts when accessing column elements.

1 //cuda_defines
2 LDS.U R16, [R2 + 0x38] //load from shared
3 FFMA R17, R10, c[0x3][0x1dc] R17 //float multiply add
4
5 //partially_evaluated
6 LDS.U R16, [R2 + 0x38] //load from shared
7 FFMA R17, R10, 42 R17 //float multiply add

Listing 8: Convolution partial evaluation
The convolution itself is a dot product of two vectors of filter size. Since

the size is known, this cycle could be unrolled with the filter being embed-
ded. Such an unroll could be also performed by means of C++ templates
or macros, by creating a dedicated device kernel for a specific filter size and
dynamically dispatching the appropriate kernel for input data. The results
of the benchmark are depicted in figure 7. The subject 2-D array is 1GB
randomly generated, the filters are randomly generated for each diameter.
The average has been taken for each filter size from 30 runs. The gray
221-D filter could be applied first to rows and then to columns.
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area is the standard deviation. Cuda_nodefines is the implementation with
the dot product not unrolled, cuda_defines leverages macros to unroll the
product, partially_evaluated leverages partial evaluation. Unrolled versions
are at the bottom since they reduce the loop overhead. Unrolled version
perform equally due to the code generated by the compiler as in listing 8
which has been shown to be executed in the same number of cycles in 3.1.2.

3.3 Discussion

While data embedding by means of partial evaluation achieves the same
performance as constant memory access, given that no access instructions
had been reduced, there are cases when it outperforms due to the reasons
internal to the compiler. Thus, partial evaluation could be a way to auto-
mate constant memory management and even speed up the performance.
Since the performance is compiler specific, which is further device-specific,
there is a need to investigate the compiler which is publicly unspecified,
and at the moment of writing there is a lack of tools for that. Also, partial
evaluation performance is scenario- specific, hence other scenarios should
be investigated as well. Finally, guidelines of developing a program that
is amenable to partial evaluation [11] could be extended to explicitly mul-
tithreaded programs such as CUDA kernels, or the semantics of the in-
termediate representation could consider the multithreaded environment.
However, these questions are beyond the scope of the work.
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Conclusion
The following results have been obtained in the course of the work.

• Experimental scenarios have been implemented23 in CUDA and AnyDSL.

• Experimental datasets have been gathered.

• The evaluation has been performed and the results have been ana-
lyzed.

– GPU architecture-specific details that affect the result have been
identified.

• A poster with a part of this work has been published24 in the proceed-
ings of PPOPP-2020.

A partial evaluation has been shown to speed up memory operations in
certain situations.

23https://github.com/Tiltedprogrammer/spec (last accessed date: 30.05.2020)
24https://dl.acm.org/doi/abs/10.1145/3332466.3374507 (last accessed date: 30.05.2020)
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