Система для моделирования алгоритмов стохастической оптимизации для задач трекинга

Турсунова Мунира Бахромовна группа 16.Б11-мм

Научный руководитель: д.ф.-м.н., проф. О. Н. Граничин Рецензент: к.ф.-м.н., Ю. В. Иванский

Санкт-Петербургский государственный университет Кафедра системного программирования

18 июня 2020

Содержание

- 1 Введение в предметную область
- 2 Мотивация и постановка задачи
- 3 Обзор
- 4 Система
- 5 Заключение

Введение в предметную область

Нестационарная стохастическая оптимизация

Задача отслеживания параметра (трекинга)

Найти
$$\theta_n = \operatorname{Argmin}_{\theta \in \Theta} f_n(\theta), \forall n \in \mathbb{N}.$$

Модель изменения точки минимума (дрифта)

Точка минимума функции – параметр $\theta_{\rm n}$ изменяется по формуле:

$$\theta_n = \theta_{n-1} + t_n$$

Модель измерений в алгоритме стохастичкой оптимизации

Рассматриваются измерения градиента $Y_n(\theta)$ искаженные аддитивными помехами $\xi_n \in \mathbb{R}^q$:

$$Y_n(\theta) = \nabla f_n(\theta) + \xi_n, \quad n \in \mathbb{N}.$$

Мотивация и постановка задачи

Мотивация

- Крупномасштабные задачи, например, глубокое обучение, могут быть решены градиентными методами.
- Для стационарной детерминированной оптимизации быстрый градиентный метод (Нестеров, 1983) является эталоном. На практике часто применяется метод Адама.
- Онлайн обучение, мета-обучение / обучение мета-переносу являются задачами нестационарной оптимизации.
- Нет системы для моделирования алгоритмов оптимизации для задач трекинга.

Цель работы

Разработка прототипа системы для моделирования различных алгоритмов стохастической оптимизации для задач трекинга, с возможностью задания модели функции, шума и дрифта и с возможностью добавления пользовательских алгоритмов.

Постановка задач

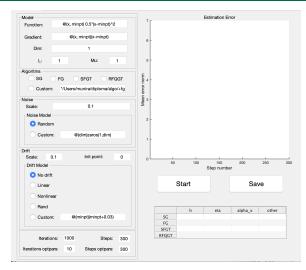
- Исследовать существующие системы для моделирования алгоритмов оптимизации.
- Составить требования к системе.
- Разработать архитектуру системы.
- Реализовать классические методы стохастической оптимизации и новый метод «Рандомизированный быстрый квазиградиентный метод для задач трекинга» (RFQGT) в системе.
- Разработать прототип системы, включающий в себя возможность визуализации невязок алгоритмов.
- Сделать графический интерфейс в системе.
- Провести апробацию системы.

Обзор

Системы

- IIO
 - Optimization Tool Matlab
 - ADMB (AD Model Builder)
 - CUTEr (Constrained and Unconstrained Testing Environment, revisited)
 - TOMLAB
 - GAMS (General Algebraic Modeling System)
- Библиотеки
 - GEKKO
 - ALGLIB
 - IMSL Numerical Libraries
 - MIDACO
 - IPOPT (Interior Point OPTimizer)

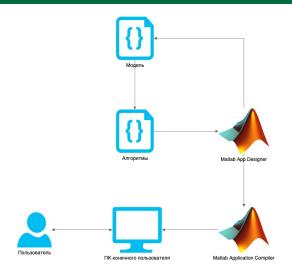
Сравнение систем

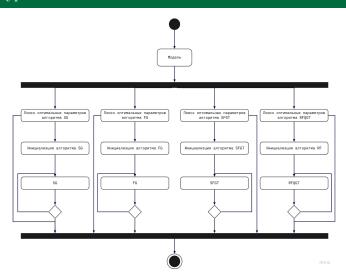

Система	Графич. Интерф.	Пользов. Модель алгоритм измерени		Модель шума	Модель дрифта	Итерации и шаги
Optimization Tool Matlab	+	_	+	_	_	+
ADMB	_	+	+	+	_	+
GAMS	_	+	+	_	_	+
CUTEr	_	+	+	_	_	+
Новая система	+	+	+	+	+	+

Система

Требования к системе

- Возможность задания модели измерений.
- Возможность задания модели шума.
- Возможность задания модели дрифта.
- Возможность добавления пользовательских алгоритмов.
- Возможность задания количества шагов и количества итераций алгоритма.


Графический интерфейс системы

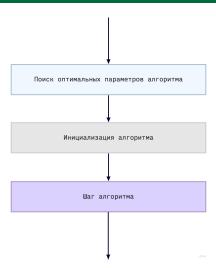

Используемые инструменты

- Matlab
- Matlab App Designer
- Matlab Application Compiler

Архитектура системы

Архитектура системы

Детали реализации


Модель в системе

- Константы алгоритма: константа Липшица, константа строгой выпуклости и т.д.
- Измерения функций
- Измерения градиента
- \blacksquare Точки минимума θ_{n}

Поиск оптимальных параметров в системе

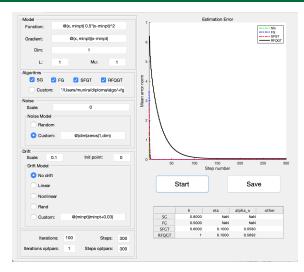
- lacktriangle Шаг алгоритма $h < rac{1}{L}, \, h = [rac{0.2}{L}, rac{0.4}{L}, \dots]$
- $\eta = \left[\frac{0.1}{\mu}, \frac{0.2}{\mu}, \dots\right]$
-

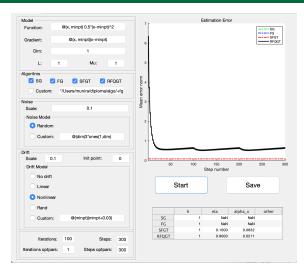
Схема работы алгоритмов в системе

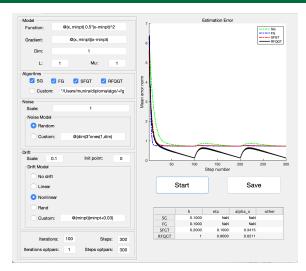
Схема работы алгоритмов в системе: RFQGT

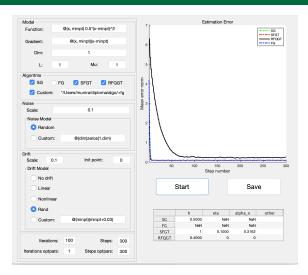
Фиксируются значения параметров $h > 0, \beta > 0, \eta \in (0, \mu), \alpha_x \in (0, 1)$

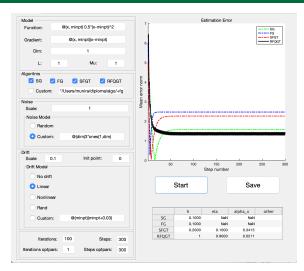
Начнаем с начальной оценки $\hat{\theta}_0 \in \mathbb{R}^q$; Выбираем $\gamma_0 > 0$, $v_0 = \hat{\theta}_0$

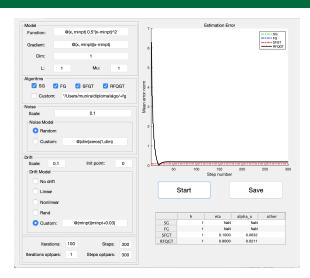

Ha n-ой итерации (n > 0):

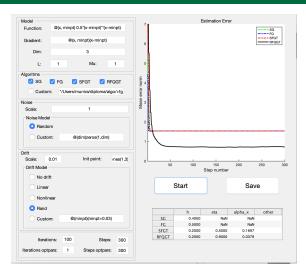

- П Найти $\alpha_n \in [\alpha_x, 1)$ т. ч.: $\alpha_n < \sqrt{2H\gamma_{n+1}}$.
- Присвоить $\gamma_{n+1} = (1 \alpha_n)\gamma_n + \alpha_n(\mu \eta)$.
- В Вычислить $\mathbf{x}_{n} = \frac{1}{\gamma_{n} + \alpha_{n} \gamma_{n-1}} \left(\alpha_{n} \gamma_{n-1} \mathbf{v}_{n-1} + \gamma_{n} \hat{\theta}_{2n} \right).$
- $oldsymbol{\Delta}_n$ по распределению Бернулли.
- \blacksquare Найти значения 2 наблюдений $y_n^{\pm} = y_{2n-1+\frac{1}{2}(1\pm 1)}(x_n \pm \beta \Delta_n).$
- **6** Найти новую оценку $\hat{\theta}_{n+1}$:

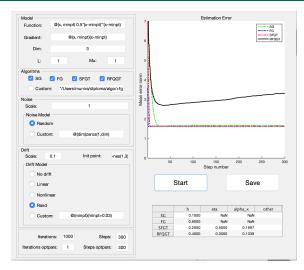

$$\hat{\theta}_{2n-1} = \hat{\theta}_{2(n-1)}, \; \hat{\theta}_{2(n)} = x_n - h \bar{Y}_n, \; \bar{Y}_n = \Delta_n \frac{y_n^+ - y_n^-}{2\beta}.$$


 \blacksquare Найти $\mathbf{v}_{n+1} = \gamma_{n+1}^{-1}((1-\alpha_n)\gamma_n\mathbf{v}_n + \alpha_n(\mu-\eta)\mathbf{x}_n - \alpha_n\bar{\mathbf{Y}}_n(\mathbf{x}_n) + \alpha_n\mathbf{L}\boldsymbol{\beta}).$


- Модели измерений
 - Квадратичная функция различных размерностей
- Модели шума
 - Отсутствие шума
 - Аддитивный шум
 - Константный шум
- Модели дрифта
 - Отсутствие дрифта
 - Случайный
 - Линейный
 - Нелинейный
 - Пользовательский
- Алгоритмы
 - Стохастический градиентный спуск (SG)
 - Быстрый градиентный метод Нестерова (FG)
 - Быстрый стохастический градиентный метод для задач трекинга (SFGT)
 - Рандомизированный быстрый квазиградиентный метод для задач трекинга (RFQGT)
 - Пользовательский алгоритм







27 / 33

Нагрузочное тестировние системы

Nº	Шаги	Итер.	Шаги пар.	Итер. пар.	SG (сек.)	FG (сек.)	SFGT (cek.)	RFQGT (сек.)
1	10	100	10	1	0.03	0.04	0.24	0.26
2	10	1000	10	1	0.32	0.44	0.61	0.61
3	10	1000	10	10	0.33	0.48	1.62	1.65
4	300	10	300	1	0.08	0.19	3.43	3.49
5	300	100	300	1	0.43	0.92	4.22	4.35
6	300	100	300	10	0.75	1.52	33.19	35.70
7	300	1000	300	1	3.84	8.50	12.96	14.44

Среднее время работы алгоритмов

Введение в предметную область Мотивация и постановка задачи Обзор Система **Заключение** Простановка задачи образорование образо

Заключение

Заключение

- Исследованы существующие системы для моделирования алгоритмов оптимизации.
- Составлены требования к системе.
- Разработана архитектура системы.
- Реализованы классические методы стохастической оптимизации и новый метод «Рандомизированный быстрый квазиградиентный метод для задач трекинга» (RFQGT) в системе.
- Разработан прототип системы, включающий в себя возможность визуализации невязок алгоритмов.
- Добавлен графический интерфейс в систему.
- Проведена апробация системы.
- Доклад на XXII конференции молодых ученых «Навигация и управление движением»
- Статья в Journal on Optimization Theory and Application

Приложения

Проект на GitHub