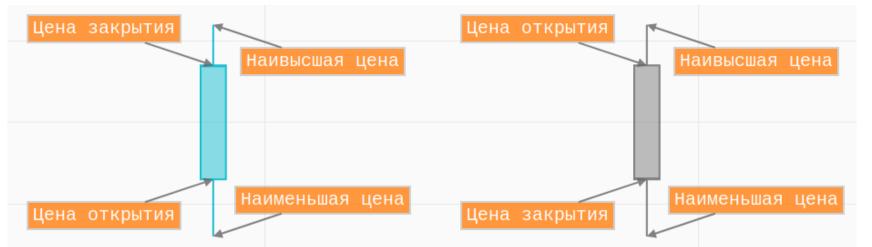

СИСТЕМА ДЛЯ МОДЕЛИРОВАНИЯ РАБОТЫ ИНСТРУМЕНТОВ ТЕХНИЧЕСКОГО АНАЛИЗА НА ФИНАНСОВЫХ РЫНКАХ


АВТОР: ВОЛКОВ Г. В., 471 ГРУППА

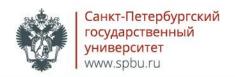
НАУЧНЫЙ РУКОВОДИТЕЛЬ: Д.Ф.-М.Н., ПРОФЕССОР ГРАНИЧИН О. Н.

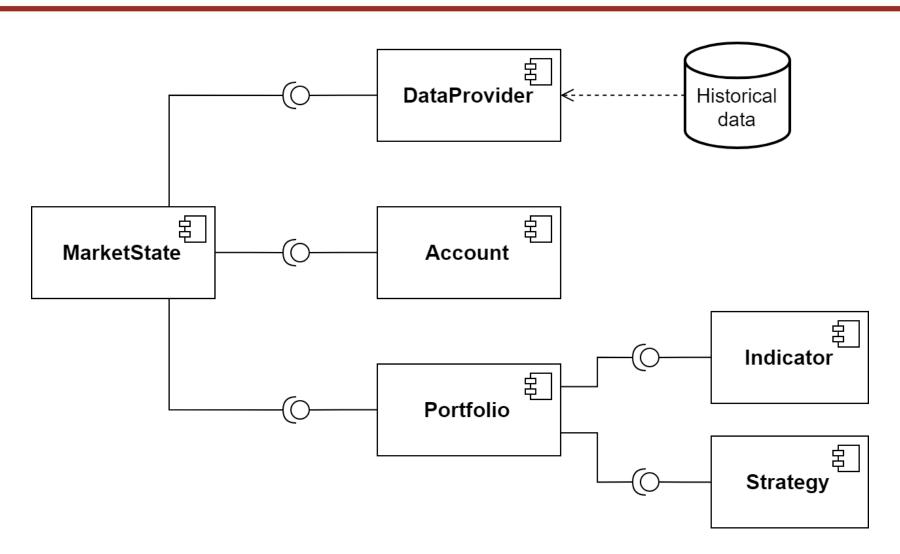
РЕЦЕНЗЕНТ: ВЕДУЩИЙ ПРОГРАММИСТ ООО «СИНОПСИС СПБ» ГРИГЕЛЬ К. М.

- Разработать прототип системы для моделирования работы стратегий технического анализа и их оценивания
- Апробировать алгоритм знаковозмущённых сумм (SPS) и сравнить с другими стратегиями

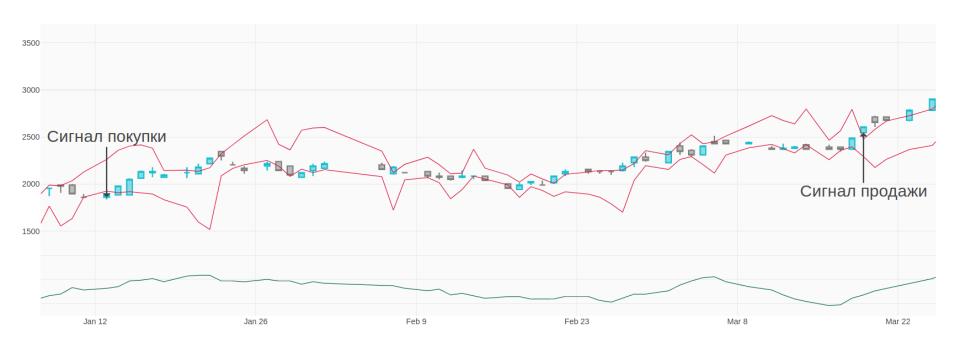
- Разработать требования к прототипу системы
- Разработать архитектуру прототипа системы
- Реализовать прототип системы
- Реализовать метрики качества работы стратегий
- Апробировать существующие стратегии и сравнить со стратегией, основанной на алгоритме SPS

- Возможность добавления новых индикаторов и стратегий
- Учет параметров финансового рынка (маржинальная торговля, комиссии)
- Метрики работы стратегии
- Абстрагирование от источника данных (SQLite, CSV)

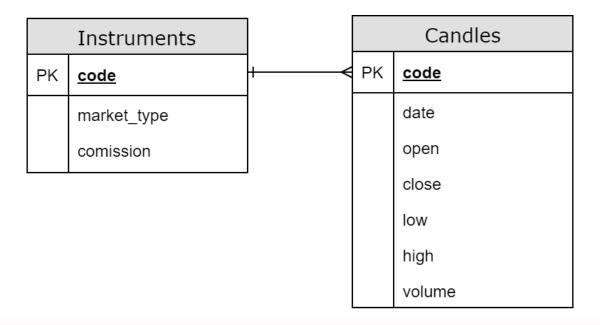

AlgoTerminal


- Нет возможности использования собственного источника исторических данных
- PyAlgoTrade
 - Небольшое количество метрик
 - Исторические данные только в CSV

- Среднегодовая доходность
- Среднегодовая волатильность
- Процент выигрышных сделок


АПРОБАЦИЯ: СКОЛЬЗЯЩИЕ СРЕДНИЕ

АПРОБАЦИЯ: ЛИНИИ БОЛЛИНДЖЕРА



- На исторических данных за год производится оптимизация параметров
- На следующем годе производится симуляция

Метрика	Скользящие средние	Линии Боллинджера	SPS
Доходность (%)	7,6	32,8	32,7
Волатильность (%)	9,0	9,6	10,6
Количество выигрышных позиций (%)	43,7	71,5	69,0

- Разработаны и проанализированы требования к прототипу системы
- Разработана архитектура прототипа системы
- Реализован прототип системы
- Реализованы метрики качества работы стратегий
- Апробирован алгоритм SPS и проведён сравнительный анализ с другими апробированными стратегиями

Санкт-Петербургский государственный университет spbu.ru

ЭКСПЕРИМЕНТЫ

Метрика	Скользящие средние	Линии Боллинджера	SPS
Доходность (%)	7,6	32,8	32,7
Волатильность (%)	9,0	9,6	10,6
Максимальная просадка (%)	16,9	12,9	13,9
Ожидаемый выигрыш (%)	1,5	6,3	14,5
Количество инвестиций	2,9	4,8	5,2
Среднее время удержания (сут)	26,5	31,6	38,0
Количество выигрышных позиций (%)	43,7	71,5	69
Коэффициент Шарпа	0,7	5,2	3,2

- Выберем натуральные q и M
- Пусть $\beta_{t0} = 1$; t = 1, 2, ..., T
- Сгенерируем случайные величины по Bernoulli $\beta_{t\,i}=\,\pm 1$ с вероятностями ½
- j = 1, 2, ..., M 1
- Рассмотрим $H_j(f) = \sum_{t=1}^T \beta_{tj}(f y_t)$
- Определим $Rank_0(f)$ как номер позиции $H_0(f)^2$ в упорядоченной последовательности из

$$H_0(f)^2$$
, $H_1(f)^2$, ..., $H_{M-1}(f)^2$

Теорема

Множество $\{f: Rank_0(f) \leq M - q\}$ содержит истинный сигнал f_*

с вероятностью
$$1 - \frac{q}{M}$$