
Saint Petersburg State University

Software engineering

Vladimir Miloserdov

Flexible report generation system
development for LLVM LNT

Graduation Thesis

Scientific supervisor:
Senior Lecturer Iakov Kirilenko

Reviewer:
Associate Professor Anton Korobeynikov

Adviser:
Toolchains, Technical Lead, Huawei Sergey Yakushkin

Saint Petersburg
2019

Contents
Introduction 3

Acknowledgments 5

1. Background 6
1.1. Introduction to LLVM . 6
1.2. Testing . 7

1.2.1. Compiler testing . 7
1.3. Introduction to LLVM LNT 8

2. Statement of the problem 10

3. System specification 11
3.1. Developer report specification 11

4. System design 13
4.1. Justification of choosing LNT as a base system 13
4.2. System architecture . 13

5. System integration 15
5.1. Existing testing flow overview 15
5.2. Jenkins pipeline modification 16
5.3. Report delivery . 16

6. Testing and evaluation 17
6.1. System evaluation . 17
6.2. Regression testing . 18

Conclusion 19

References 20

2

Introduction
Modern industry and science progression demand a constant growth of

computational power [1]. Present-day applications utilize emerging tech-
nologies such as artificial intelligence systems, blockchain, virtual and aug-
mented reality [2] and 5-th generation networks. Often they apply harsh
limits to software and underlying hardware. Such limits include program
execution time, power [3] and code size efficiency, device dimensions, porta-
bility, and reliability. To meet these expectations it is in turn required to
constantly improve both processors and development tools – compilers, de-
buggers, simulators, etc [4].

Testing and performance analysis plays a major role in the tools devel-
opment process. It is worth noting that software and hardware and tools
themselves are being changed at the same time. Because of the great com-
plexity of all components, huge test suites and many different benchmarks
are involved across multiple teams. This generates a lot of effort spent on
such casual tasks like running tests in trying to reproduce the desired result
and localizing errors. Many of both performance and functional regressions
are being detected too late in the process which bumps the difficulty of de-
bugging and correcting mistakes. Moreover, in many cases, it is not trivial
to understand which component – for instance, a test suite or hardware
caused the trouble.

Under such conditions, a unified testing system capable of running var-
ious types of tests and benchmarks as well as providing convenient tools,
such as producing developer reports to work with their results, helps to
greatly facilitate the testing and development processes.

This work is mainly focused on improving one such system – LLVM
LNT which is the part of LLVM compiler project. It is a tool that allows
to conduct compiler testing and visualize its results. In particular, the goal
of the work is to create a flexible, configurable subsystem for developer
report generation which should become a part of both LNT and the testing
automation flow.

3

Developer reporting is a useful feature that allows compiler developers
not to spend too much time gathering testing information after each commit
they make. It also prevents them, to some extend, from missing regressions
after the change and, generally, facilitates error detection on earlier stages.

Also, such feature can be used for performance and accuracy evaluation
of hardware simulators. For instance, one can set up regular comparisons
between hardware and simulators to determine the actual accuracy dynam-
ics of cycle approximate simulator1.

1Cycle approximate simulator is the the simulator which, in contrast to cycle-by-cycle simulator, aims for
cycle accuracy, but cannot absolutely achieve it. Usually, it runs a lot faster then one with cycle-by-cycle
approach.

4

Acknowledgments
I would like to thank Iakov Kirilenko for overseeing my work and for

helping me write this thesis.

I would also like to thank Sergey Yakushkin without whom this work
would have been impossible for supervising the project, contributing ideas
and providing valuable feedback throughout the process.

More thanks go to Dmitry Koznov for providing his feedback on writing.
Special thanks go to Anton Korobeynikov for reviewing this work.

Also, I would like to thank Stanislav Sartasov and Dmitry Luciv for the
inspiration to study and advice.

Finally, I would like to thank my sister – Liubov Miloserdova, and friends
– A. Polyakov, P. Shumilov, V. Shabanov, M. Kostycin, I. Tyulandin, G.
Volkov, A. Minaev, K. Smirnov, and A. Chugaev for their feedback and
incredible moral support.

5

1 Background
This chapter provides a reader with the necessary knowledge about com-

pilers and their testing, LLVM, main concepts of LNT testing framework
and developer reports.

1.1 Introduction to LLVM
The LLVM infrastructure – an umbrella of multiple projects used

for building compilers. It includes Clang frontends, backends, linker, im-
plementation of the C++ standard library and a JIT engine. [5]
An LLVM-based compiler – a compiler built partially or completely

with the LLVM infrastructure.
For the purpose of this work, we will consider universal optimizing

LLVM-based compilers built completely on top of the LLVM infrastructure.
Typical structure of such compiler can be illustrated in Figure-1 below.

Figure 1: LLVM-based compiler structure

One of the key features of modern compilers, and in particular LLVM,
is the modular architecture. A compiler is usually divided into frontend,
middlend, and backend. Such a structure is shown in Figure-1.
Frontend translates source code from a high-level programming lan-

guage into lower-level compiler’s intermediate representation (IR). For in-
stance, Clang frontend translates C or C++ code into LLVM IR.
Middlend is often understood as a system of various code optimiz-

ers working on the intermediate level. It is responsible for architecture-
independent transformations of IR code. For example, dead code elimina-
tion pass is considered to be part of middlend.

6

Backend produces low-level code for targets, such as assembly or binary
code from IR. It also includes some architecture-dependent transformations.

1.2 Testing
Software testing – the process of dynamic verification that a program

provides expected behaviors on a finite set of test cases, suitably selected
from the usually infinite execution domain. [6]

Throughout this work, we are interested in functional testing and per-
formance testing.
Functional testing – software testing for the purpose of checking the

correct implementation of functional requirements for this software.
Performance testing – software testing to verify its compliance with

various performance requirements, as well as to evaluate performance indi-
cators of this software (for example, the operating time consumed by the
RAM).

1.2.1 Compiler testing

The compiler should at least produce correct code. In modern reality,
the performance of the generated code and the compilation time are also of
great importance.
A systematic approach is needed for testing and evaluation of the above.

To verify the correctness, sets of functional tests are commonly used, which
include various cases of programs according to the specification of the com-
piler. It is important to check as many of these cases as possible by providing
the largest test coverage. [7]
For performance evaluation, special test programs that measure metrics

(characteristics) in different execution scenarios – benchmarks. Metrics
used in compiler development can include the number of processor cycles
spent on benchmark execution, generated code size, as well as cache misses
count, pipeline stalls and others.

7

1.3 Introduction to LLVM LNT
LNT1 – a tool for performance and regression testing of compilers. Orig-

inally developed for testing LLVM-based compilers, it, however, can be used
for testing any other compilers and applications.
The software is implemented in Python and has a Flask-based2 web ap-

plication for accessing testing data as well as a command-line user interface.
The web application uses Jinja2[8] as template engine while the database
layer uses SQLAlchemy[9] for its object-relational mapping (ORM)3 and
supports multiple backends such as SQLite and PostgreSQL. [10]

Figure 2: LNT web application screenshot

For the context of this work, we will need to be familiar with the fol-
lowing concepts.
Order represents the state of the software to be tested (i.e. compiler).

For example, different versions or submissions can be used as Orders.
Machine represents the testing configuration used. For instance, it can

be an actual hardware machine configuration, a set of compilation param-
eters or a combination of them.

1LNT stands for LLVM Nightly Testing
2Flask is a python web framework. Project homepage: http://flask.pocoo.org
3Object-relational mapping (ORM) is a technique in which data from object code is connected to a

relational database.

8

http://flask.pocoo.org

Run represents a pass through some set of tests. It has an Order on
which it was run, set of tests and a Machine – the testing configuration. As
a result of Run, we get Samples.
Sample represents test result data point for a specific test and metric.

For example, Sample (’core/benchmarks/zlib’, 473811, ’cycle_count’)
displays that on some test named zlib the resulting number of cycles was
473811.

Figure 3: LNT web application screenshot – graph of code_size metric in
the single test over different Orders

When considering two Run comparison on the single test and the spec-
ified metric, the following test statuses are possible:

Status name Description
Failed Test or benchmark failed, e.g. during the

execution or compilation
Passed Test passed
Regressed Benchmark shows regression by metric

value
Improved Benchmark shows improvement by metric

value
Table 1: Test comparison statuses

9

2 Statement of the problem
The immediate goal of this work was to produce the system capable of

generating configurable compiler testing reports for developers.
The report generation system that resulted from this work is actually

just one stage in a much larger testing automation system built upon Jenk-
ins 2 for testing Synopsys MetaWare™ [11] compiler.

This work can be divided into the following tasks:

1. Producing system specification

2. Conducting an overview of existing approaches

3. Designing and implementing the solution

4. Integrating the system into the current testing pipeline

5. System testing and evaluation

10

3 System specification
As a part of this work, system specification was produced by analyzing

feedback collected by surveying potential users of the system. In total, 7
compiler developers had responded and completed the survey.
The author came to the conclusion that the report generation system

should be implemented as an extension of LNT and provide the following
functionality:

• Ability to generate testing status reports for developers

• Ability to customize report sections

- Customization of displayed test suites and benchmarks

- Customization of displayed metrics

- Customization of displayed buckets customization

- Customization of display options

• Support of multiple hardware configurations and compiler option sets

• Support of configuring report generator by using configuration files

• Support of report sections with miscellaneous data (e.g. changelogs)

• Support of the command-line interface

3.1 Developer report specification
For the purpose of this work, developer report – customized summary

of testing results at the specific state of the development process. Report
should be divided into sections, each section displays a comparison summary
of 2 LNT Runs on the specified test suite or benchmark on some LNT
Machine.
Each section, as well as the report itself should have the valid status in

according to the table below.

11

Status name Priority Description
Failed 1 At least 1 failed test
Fixed 2 At least 1 test no longer fails
Unstable 3 Combination of performance improvements

and regressions
Regressed 4 At least 1 performance regression
Improved 5 At least 1 performance improvement
Stable 6 Default status

Table 2: Valid statuses

Developer report should contain header, status, summary and one or
more section. It should follow the structure as described in Figure 4:

Figure 4: Developer report structure

12

4 System design

4.1 Justification of choosing LNT as a base system
LLVM LNT already provides a convenient way of handling the testing

data and has re-usable built-in Jinja templates as well as some other useful
functionality.
Therefore, the author considers the requirement to build the report gen-

eration system on top of the LNT framework well-founded and justified.

4.2 System architecture

Figure 5: Architecture of the report generation system

In Fig. 2 above Report class represents the finished report which can be
saved as an HTML file. Reports are produced by produce_report method
of ReportProducer class which, in turn, is initialized with ReportConfig

13

instance – configuration of the report. In this class, report section configu-
rations are stored as ReportSectionConfig instances.
One aspect worth spending attention is RunSelect. It is responsible to

determine LNT runs for comparison in the section. It is an abstract class
and has many implementations for different scenarios.

14

5 System integration
This chapter describes the production testing flow to which the author

integrated his solution. It also covers changes of this flow which were re-
quired for successful integration.

5.1 Existing testing flow overview
As a part of this work, it was required to integrate reporting generation

system into the current system testing flow.
For automation, Jenkins 2 framework is used. The flow structure is

shown below.

Figure 6: Main stages of testing automation flow

As one can notice, there are 2 parallel stages – Building compiler and
Running tests with LNT. After each of them, a synchronization barrier is
used before starting the next stage.
For the implementation of above there is a Groovy1 library of shared

functions and each stage has its own dedicated class. The component added
during this work is colored in grey.

1Groovy – an optionally typed and dynamic Java-based programming language with static typing [12]

15

5.2 Jenkins pipeline modification
The above mentioned Jenkins 2 library was extended by developing sev-

eral functions for handling reports. This handling can be decomposed as
follows:

1. Check that the pipeline state is ready for producing reports (e.g. all
actual testing is done)

2. Get the necessary LNT Run id-s to be included in the report

3. Prepare LNT parameters for invocation

4. Invoke LNT and wait for the subprocess to be completed

5. Process the result of invocation and handle errors if necessary

6. Deliver the report if the previous step succeeded. Otherwise, send an
error report instead.

5.3 Report delivery
Generated reports are saved as HTML files to be processed by testing

automation flow. Once the job is finished, it does several checks including
that the report file is present and valid. Then reports are distributed via
email in according to mailing list policies.
The function responsible for report delivery was developed as a part of

this work in Groovy and integrated into Jenkins 2 pipeline.

16

6 Testing and evaluation
This chapter contains an overview of the system developed as a result

of this work and its testing.

6.1 System evaluation
At earlier stages of system integration, corridor testing1 and tune some

aspects like changing configuration file format from JSON to Python to
allow more powerful tweaking.
The system after completion and integration was evaluated by author

and developer test group of 3 persons. Later, the system was launched a in
testing environment and available for all compiler developers – reports were
generated after each commit. At the moment of writing, the system is ac-
tually used in production. As one can see on the figure above, the produced

Figure 7: Sample developer report with 2 sections

report complies with declared report specification. It has its header, status,
1Corridor (or Hallway) testing – usability testing technique in which randomly selected people (e.g.

colleagues) provide their feedback to tune the tested software.

17

version summary, and 2 sections – each with its own status, summary and
data tables.

Figure 8: Sample section with major regressions

Here we can more interesting section with performance changes – both
regressions and improvements. That is why section status is Unstable (ac-
cording to Table 2).
This report is basically the HTML file delivered by mail to all developers

who may be possibly interested in this specific change in the compiler.

6.2 Regression testing
LNT, like most of the projects from LLVM umbrella, uses lit tests1 for

regression testing. Alternatively, there are custom shell tests implemented
in Bash for Synopsys branch of LNT.
A decision was made to only implement lit tests because of their wider

support from LLVM Community and easier maintenance compared to shell
tests.
Fairly simple lit tests were developed as a result of this work. They were

also Integrated to GitLab CI/CD used in our development environment.

1LIT (stands for LLVM Integrated Tests) – tool for executing specially-styled regression
tests. More information on LLVM regression testing: https://llvm.org/docs/TestingGuide.html#
regression-test-structure

18

https://llvm.org/docs/TestingGuide.html#regression-test-structure
https://llvm.org/docs/TestingGuide.html#regression-test-structure

Conclusion
As a result of this work flexible configurable report generation system

was designed and implemented. At the moment of writing it is being used
by 15 compiler developers of Synopsys, Inc.
The following tasks were completed:

1. Requirements were collected from compiler developers and analyzed

2. Solution based upon existing LNT infrastructure was designed and
implemented

3. The system was integrated into current Jenkins test automation flow

4. Regression tests were developed and the system was evaluated by real
users

19

References
[1] Progress In Digital Integrated Electronics : Rep. / Intel Corporation ;

Executor: Gordon E. Moore : 1975.

[2] van Krevelen D.W.F. Augmented Reality: Technologies, Applications,
and Limitations // Vrije Universiteit Amsterdam, Department of Com-
puter Science. –– 2007.

[3] Shekhar Borkar Andrew A. Chien. The future of microprocessors //
Communications of the ACM, Vol. 54 Issue 5. –– 2011.

[4] Rogier Wester John Koster. The Software behind Moore’s Law //
IEEE. –– 2015. ––March.

[5] Team LLVM. LLVM Project. –– 2003. –– URL: http://llvm.org (on-
line; accessed: 09.05.2019).

[6] Bourque P., Fairley R.E. Guide to the Software Engineering Body of
Knowledge, Version 3.0. –– IEEE Computer Society, 2014. –– URL: www.
swebok.org.

[7] Alfred V. Aho Monica S. Lam Ravi Sethi Jeffrey D. Ullman. Compilers:
Principles, Techniques, and Tools. –– 1986.

[8] Ronacher Armin. Jinja project homepage. –– 2014. –– URL: http://
jinja.pocoo.org (online; accessed: 09.05.2019).

[9] Bayer Michael. SQLAlchemy project. The Python SQL Toolkit
and Object Relational Mapper. –– 2019. –– URL: https://www.
sqlalchemy.org (online; accessed: 09.05.2019).

[10] Dunbar Daniel. LNT Overview // LLVM Documentation. –– 2019. ––
URL: http://llvm.org/docs/lnt/intro.html (online; accessed:
09.05.2019).

20

http://llvm.org
www.swebok.org
www.swebok.org
http://jinja.pocoo.org
http://jinja.pocoo.org
https://www.sqlalchemy.org
https://www.sqlalchemy.org
http://llvm.org/docs/lnt/intro.html

[11] Synopsys Inc. Synopsys MetaWare compiler. –– 2019. –– URL: https:
//www.synopsys.com/dw/ipdir.php?ds=sw_metaware (online; ac-
cessed: 09.05.2019).

[12] Foundation Apache. Groovy programming language. –– 2019. –– URL:
http://groovy-lang.org (online; accessed: 09.05.2019).

21

https://www.synopsys.com/dw/ipdir.php?ds=sw_metaware
https://www.synopsys.com/dw/ipdir.php?ds=sw_metaware
http://groovy-lang.org

	Introduction
	Acknowledgments
	Background
	Introduction to LLVM
	Testing
	Compiler testing

	Introduction to LLVM LNT

	Statement of the problem
	System specification
	Developer report specification

	System design
	Justification of choosing LNT as a base system
	System architecture

	System integration
	Existing testing flow overview
	Jenkins pipeline modification
	Report delivery

	Testing and evaluation
	System evaluation
	Regression testing

	Conclusion
	References

