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Introduction
Graph data models are widely used in many areas, for example, graph

databases [18], bioinformatics [24], static analysis [10, 17], etc. In these
areas, it is often required to process queries for large graphs. The most
common type of graph queries is a navigational query. The result of a query
evaluation is a set of implicit relations between the nodes of the graph, i.e.
a set of paths. A natural way to specify these relations is to specify the
paths using some form of formal grammars (regular expressions, context-
free grammars) over the alphabet of edge labels. Context-free grammars
are actively used in graph querying because of the limited expressive power
of regular expressions. For example, classical same-generation queries [1]
cannot be expressed using regular expressions.
The result of a context-free path query (CFPQ) evaluation is usually a

set of triples (A,m, n), such that there is a path from the nodem to the node
n, whose labeling is derived from a non-terminal A of the given context-
free grammar. This type of query is evaluated using the relational query
semantics [13]. Another example of path query semantics is the single-path
query semantics [14] which requires presenting a single path from the nodem
to the node n whose labeling is derived from a non-terminal A for all triples
(A,m, n) evaluated using the relational query semantics. There is a number
of algorithms for CFPQ evaluation using these semantics [9, 11, 13, 14, 28].
The existing algorithms for CFPQ evaluation w.r.t. these semantics

demonstrate a poor performance when applied to large graphs. The al-
gorithms for context-free language recognition had a similar problem until
Valiant [31] proposed a parsing algorithm, which computes a recognition
table by computing matrix transitive closure. The algorithm works for
a linear input and has the complexity, which is essentially the same as for
Boolean matrix multiplication. One of the hard open problems is to general-
ize Valiant’s matrix-based approach for context-free path query evaluation.
Proposing the first matrix-based algorithm for CFPQ evaluation using

these semantics makes it possible to efficiently apply such computing tech-
niques as GPGPU (General-Purpose computing on Graphics Processing
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Units) and parallel computation [6]. From a practical point of view, matrix
multiplication can be performed on different GPUs independently. It can
help to utilize the power of multi-GPU systems and increase the perfor-
mance of context-free path querying. Also, the algorithms for distributed-
memory matrix multiplication make it possible to handle graph sizes inher-
ently larger, than the memory available on the GPU [7, 29, 35].
Also, there are conjunctive grammars [22], which have more expressive

power than context-free grammars. Path querying with conjunctive gram-
mars is known to be undecidable [13]. Although there is an algorithm [36]
for path querying with linear conjunctive grammars [22] which is used in
static analysis and provides an over-approximation of the result. However,
there is no algorithm for path querying with conjunctive grammars of an
arbitrary form.
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1 Problem statement
The purpose of this work is to develop an effective matrix-based algo-

rithm for path querying with context-free and conjunctive grammars, for
which it is required to solve the problems listed below.

• Introduce a matrix-based algorithm for context-free path query eval-
uation w.r.t. relational query semantics.

• Introduce a matrix-based algorithm for context-free path query eval-
uation w.r.t. single-path query semantics.

• Introduce a matrix-based algorithm for path query evaluation w.r.t.
conjunctive grammars and relational query semantics.

• Show the practical applicability of our algorithms by presenting the
results of their evaluation on a set of conventional benchmarks.
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2 Background
In this section, we introduce the basic notions used throughout this

work.
Let Σ be a finite set of edge labels. Define an edge-labeled directed graph

as a tuple D = (V,E) with a set of nodes V and a directed edge-relation
E ⊆ V × Σ × V . For a path π in a graph D, we denote the unique word
obtained by concatenating the labels of the edges along the path π as l(π).
Also, we write nπm to indicate that a path π starts at the node n ∈ V and
ends at the node m ∈ V .
Following Hellings [13], we deviate from the usual definition of a context-

free grammar in Chomsky Normal Form [8] by not including a special start-
ing non-terminal, which will be specified in the path queries to the graph.
Since every context-free grammar can be transformed into an equivalent
one in Chomsky Normal Form and checking that an empty string is in the
language is trivial it is sufficient to consider only grammars of the following
type. A context-free grammar is a triple G = (N,Σ, P ), where N is a finite
set of non-terminals, Σ is a finite set of terminals, and P is a finite set of
productions of the following forms:

• A→ BC, for A,B,C ∈ N ,

• A→ x, for A ∈ N and x ∈ Σ.

Note that we omit the rules of the form A→ ε, where ε denotes an empty
string. This does not restrict the applicability of our algorithm because only
the empty paths mπm correspond to an empty string ε.
We use the conventional notation A

∗−→ w to denote that a string w ∈ Σ∗

can be derived from a non-terminal A by some sequence of applications of
the production rules from P . The language of a grammar G = (N,Σ, P )

with respect to a start non-terminal S ∈ N is defined by

L(GS) = {w ∈ Σ∗ | S ∗−→ w}.

For a given graphD = (V,E) and a context-free grammar G = (N,Σ, P ),
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we define context-free relations RA ⊆ V × V , for every A ∈ N , such that

RA = {(n,m) | ∃nπm (l(π) ∈ L(GA))}.

We define a binary operation ( · ) on arbitrary subsets N1, N2 of N with
respect to a context-free grammar G = (N,Σ, P ) as

N1 ·N2 = {A | ∃B ∈ N1,∃C ∈ N2 such that (A→ BC) ∈ P}.

Using this binary operation as a multiplication of subsets of N and union
of sets as an addition, we can define a matrix multiplication, a×b = c, where
a and b are matrices of a suitable size that have subsets of N as elements,
as

ci,j =
n∪

k=1

ai,k · bk,j.

According to Valiant [31], we define the transitive closure of a square
matrix a as a+ = a

(1)
+ ∪ a

(2)
+ ∪ · · · where a(1)+ = a and

a
(i)
+ =

i−1∪
j=1

a
(j)
+ × a

(i−j)
+ , i ≥ 2.

We enumerate the positions in the input string s of Valiant’s algorithm
from 0 to the length of s. Valiant proposes the algorithm for computing
this transitive closure only for upper triangular matrices, which is sufficient
since for Valiant’s algorithm the input is essentially a directed chain and
for all possible paths nπm in a directed chain n < m. In the context-free
path querying input graphs can be arbitrary. For this reason, we need to
compute the transitive closure of an arbitrary square matrix.
Also, the conjunctive grammars can be used in the path querying prob-

lems. Similar to the case of the context-free grammars, we deviate from the
usual definition of a conjunctive grammar in the binary normal form [22]
by not including a special start non-terminal, which will be specified in the
queries to the graph. Since every conjunctive grammar can be transformed
into an equivalent one in the binary normal form [22] and checking that
an empty string is in the language is trivial, then it is sufficient to only
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consider grammars of the following type. A conjunctive grammar is 3-tuple
G = (N,Σ, P ) where N is a finite set of non-terminals, Σ is a finite set of
terminals, and P is a finite set of productions of the following forms:

• A→ B1C1 & . . .& BmCm, for m ≥ 1, A,Bi, Ci ∈ N ,

• A→ x, for A ∈ N and x ∈ Σ.

For conjunctive grammars we also use the conventional notation A
∗−→ w

to denote that the string w ∈ Σ∗ can be derived from a non-terminal A by
some sequence of applying the production rules from P . The relation → is
defined as follows:

• Using a rule A→ B1C1 & . . .& BmCm ∈ P , any atomic subterm A of
any term can be rewritten by the subterm (B1C1 & . . .& BmCm):

. . . A . . .→ . . . (B1C1 & . . .& BmCm) . . .

• A conjunction of several identical strings in Σ∗ can be rewritten by
one such string: for every w ∈ Σ∗,

. . . (w & . . .& w) . . .→ . . . w . . .

The language of a conjunctive grammar G = (N,Σ, P ) with respect to
a start non-terminal S ∈ N is defined by L(GS) = {w ∈ Σ∗ | S ∗−→ w}.
For a given graph D = (V,E) and a conjunctive grammar G = (N,Σ, P ),

we define conjunctive relations RA ⊆ V × V , for every A ∈ N , such that
RA = {(n,m) | ∃nπm (l(π) ∈ L(GA))}.
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3 Related works
Problems in many areas can be reduced to one of the formal-languages-

constrained path problems [4]. For example, various problems of static code
analysis [5, 32] can be formulated in terms of the context-free language
reachability [25] or in terms of the linear conjunctive language reachabil-
ity [36].
One of the well-known problems in the area of graph database analysis

is the language-constrained path querying. For example, the regular lan-
guage constrained path querying [26, 3, 2, 19], and the context-free language
constrained path querying.
There are a number of solutions [13, 28, 9] for context-free path query

evaluation w.r.t. the relational query semantics, which employ such pars-
ing algorithms as CYK [15, 34] or Earley [12]. Other examples of path
query semantics are single-path and all-path query semantics. The all-path
query semantics requires presenting all possible paths from node m to node
n whose labeling is derived from a non-terminal A for all triples (A,m, n)

evaluated using the relational query semantics. Hellings [14] presented al-
gorithms for the context-free path query evaluation using the single-path
and the all-path query semantics. If a context-free path query w.r.t. the
all-path query semantics is evaluated on cyclic graphs, then the query result
can be an infinite set of paths. For this reason, in [14], annotated grammars
are proposed as a possible solution.
In [11], the algorithm for context-free path query evaluation w.r.t. the

all-path query semantics is proposed. This algorithm is based on the gener-
alized top-down parsing algorithm — GLL [27]. This solution uses deriva-
tion trees for the result representation which is more native for grammar-
based analysis. The algorithms in [11, 14] for the context-free path query
evaluation w.r.t. the all-path query semantics can also be used for query
evaluation using the relational and the single-path semantics.
Our work is inspired by Valiant [31], who proposed an algorithm for

general context-free recognition in less than cubic time. This algorithm
computes the same parsing table as the CYK algorithm but does this by
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offloading the most intensive computations into calls to a Boolean matrix
multiplication procedure. This approach not only provides an asymptot-
ically more efficient algorithm but it also allows us to effectively apply
GPGPU computing techniques. Valiant’s algorithm computes the transi-
tive closure a+ of a square upper triangular matrix a. Valiant also showed
that the matrix multiplication operation (×) is essentially the same as |N |2
Boolean matrix multiplications, where |N | is the number of non-terminals
of the given context-free grammar in Chomsky normal form.
Hellings [13] presented an algorithm for the context-free path query

evaluation using the relational query semantics. According to Hellings, for
a given graph D = (V,E) and a grammar G = (N,Σ, P ) the context-free
path query evaluation w.r.t. the relational query semantics reduces to a
calculation of the context-free relations RA. Thus, in this work, we focus on
the calculation of these context-free relations. Also, Hellings [13] presented
an algorithm for the context-free path query evaluation using the single-
path query semantics which evaluates paths of minimal length for all triples
(A,m, n), but also noted that the length of these paths is not necessarily
upper bounded. Thus, in this work, we evaluate an arbitrary path for all
triples (A,m, n).
Yannakakis [33] analyzed the reducibility of various path querying prob-

lems to the calculation of the transitive closure. He formulated a problem
of Valiant’s technique generalization to the context-free path query eval-
uation w.r.t. the relational query semantics. Also, he assumed that this
technique cannot be generalized for arbitrary graphs, though it does for
acyclic graphs.
Thus, the possibility of reducing the context-free path query evaluation

using the relational and the single-path query semantics to the calculation
of the transitive closure is an open problem.
Also, there is an algorithm [36] for path querying with linear conjunc-

tive grammars and relational query semantics. This grammars have no
more than one nonterminal in each conjunct of the rule. Thus, the possi-
bility of creating an algorithm for path query evaluation w.r.t. conjunctive
grammars of an arbitrary form is an open problem.
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4 An algorithm for CFPQ using relational
query semantics

In this section, we show how the context-free path query evaluation using
the relational query semantics can be reduced to the calculation of matrix
transitive closure acf , prove the correctness of this reduction, introduce an
algorithm for computing the transitive closure acf , and provide a step-by-
step demonstration of this algorithm on a small example.

4.1 Reducing CFPQ to transitive closure
In this section, we show how the context-free relations RA can be calcu-

lated by computing the matrix transitive closure acf .
We introduce another definition of the transitive closure of an arbitrary

square matrix a as
acf = a(1) ∪ a(2) ∪ · · ·

where a(1) = a and a(i) = a(i−1) ∪ (a(i−1) × a(i−1)), i ≥ 2.

To show that Valiant’s and this definitions of the matrix transitive clo-
sure are equivalent, we introduce the partial order ⪰ on matrices with the
fixed size which have subsets of N as elements. For square matrices a, b of
the same size, we denote a ⪰ b iff ai,j ⊇ bi,j, for every i, j. For these two
definitions of transitive closure, the following lemmas and theorem hold.

Lemma 1 Let G = (N,Σ, P ) be a grammar, let a be a square matrix. Then
a(k) ⪰ a

(k)
+ for any k ≥ 1.

Proof: (Proof by Induction)
Basis: The statement of the lemma holds for k = 1, since

a(1) = a
(1)
+ = a.

Inductive step: Assume that the statement of the lemma holds for
any k ≤ (p− 1) and show that it also holds for k = p where p ≥ 2. For any
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i ≥ 2

a(i) = a(i−1) ∪ (a(i−1) × a(i−1))⇒ a(i) ⪰ a(i−1).

Hence, by the inductive hypothesis, for any i ≤ (p− 1)

a(p−1) ⪰ a(i) ⪰ a
(i)
+ .

Let 1 ≤ j ≤ (p− 1). The following holds

(a(p−1) × a(p−1)) ⪰ (a
(j)
+ × a

(p−j)
+ ),

since a(p−1) ⪰ a
(j)
+ and a(p−1) ⪰ a

(p−j)
+ . By the definition,

a
(p)
+ =

p−1∪
j=1

a
(j)
+ × a

(p−j)
+

and from this it follows that

(a(p−1) × a(p−1)) ⪰ a
(p)
+ .

By the definition,

a(p) = a(p−1) ∪ (a(p−1) × a(p−1))⇒ a(p) ⪰ (a(p−1) × a(p−1)) ⪰ a
(p)
+

and this completes the proof of the lemma. □

Lemma 2 Let G = (N,Σ, P ) be a grammar, let a be a square matrix. Then
for any k ≥ 1 there is j ≥ 1, such that (

∪j
i=1 a

(i)
+ ) ⪰ a(k).

Proof: (Proof by Induction)
Basis: For k = 1 there is j = 1, such that

a
(1)
+ = a(1) = a.

Thus, the statement of the lemma holds for k = 1.
Inductive step: Assume that the statement of the lemma holds for

any k ≤ (p− 1) and show that it also holds for k = p where p ≥ 2. By the
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inductive hypothesis, there is j ≥ 1, such that

(

j∪
i=1

a
(i)
+ ) ⪰ a(p−1).

By the definition,

a
(2j)
+ =

2j−1∪
i=1

a
(i)
+ × a

(2j−i)
+

and from this it follows that

(

2j∪
i=1

a
(i)
+ ) ⪰ (

j∪
i=1

a
(i)
+ )× (

j∪
i=1

a
(i)
+ ) ⪰ (a(p−1) × a(p−1)).

The following holds

(

2j∪
i=1

a
(i)
+ ) ⪰ a(p) = a(p−1) ∪ (a(p−1) × a(p−1)),

since

(

2j∪
i=1

a
(i)
+ ) ⪰ (

j∪
i=1

a
(i)
+ ) ⪰ a(p−1)

and

(

2j∪
i=1

a
(i)
+ ) ⪰ (a(p−1) × a(p−1)).

Therefore there is 2j, such that

(

2j∪
i=1

a
(i)
+ ) ⪰ a(p)

and this completes the proof of the lemma. □

Theorem 1 Let G = (N,Σ, P ) be a grammar, let a be a square matrix.
Then a+ = acf .

Proof: By the lemma 1, for any k ≥ 1, a(k) ⪰ a
(k)
+ . Therefore

acf = a(1) ∪ a(2) ∪ · · · ⪰ a
(1)
+ ∪ a

(2)
+ ∪ · · · = a+.
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By the lemma 2, for any k ≥ 1 there is j ≥ 1, such that

(

j∪
i=1

a
(i)
+ ) ⪰ a(k).

Hence
a+ = (

∞∪
i=1

a
(i)
+ ) ⪰ a(k),

for any k ≥ 1. Therefore

a+ ⪰ a(1) ∪ a(2) ∪ · · · = acf .

Since acf ⪰ a+ and a+ ⪰ acf ,

a+ = acf

and this completes the proof of the theorem. □
Further, in this work, we use the transitive closure acf instead of a+ and,

by the theorem 1, an algorithm for computing acf also computes Valiant’s
transitive closure a+.
Let G = (N,Σ, P ) be a grammar and D = (V,E) be a graph. We

enumerate the nodes of the graph D from 0 to (|V | − 1). We initialize the
elements of the |V |× |V | matrix a with ∅. Further, for every i and j we set

ai,j = {Ak | ((i, x, j) ∈ E) ∧ ((Ak → x) ∈ P )}.

Finally, we compute the transitive closure

acf = a(1) ∪ a(2) ∪ · · ·

where
a(i) = a(i−1) ∪ (a(i−1) × a(i−1)),

for i ≥ 2 and a(1) = a. For the transitive closure acf , the following state-
ments hold.

Lemma 3 Let D = (V,E) be a graph, let G = (N,Σ, P ) be a grammar.
Then for any i, j and for any non-terminal A ∈ N , A ∈ a

(k)
i,j iff (i, j) ∈ RA
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and iπj, such that there is a derivation tree of the height h ≤ k for the
string l(π) and a context-free grammar GA = (N,Σ, P, A).

Proof: (Proof by Induction)
Basis: Show that the statement of the lemma holds for k = 1. For

any i, j and for any non-terminal A ∈ N , A ∈ a
(1)
i,j iff there is iπj that

consists of a unique edge e from the node i to the node j and (A→ x) ∈ P

where x = l(π). Therefore (i, j) ∈ RA and there is a derivation tree of
the height h = 1, shown in Figure 1, for the string x and a context-free
grammar GA = (N,Σ, P, A). Thus, it has been shown that the statement
of the lemma holds for k = 1.

A

x

Figure 1: The derivation tree of the height h = 1 for the string x = l(π).

Inductive step: Assume that the statement of the lemma holds for
any k ≤ (p− 1) and show that it also holds for k = p where p ≥ 2. For any
i, j and for any non-terminal A ∈ N ,

A ∈ a
(p)
i,j iff A ∈ a

(p−1)
i,j or A ∈ (a(p−1) × a(p−1))i,j,

since
a(p) = a(p−1) ∪ (a(p−1) × a(p−1)).

Let A ∈ a
(p−1)
i,j . By the inductive hypothesis, A ∈ a

(p−1)
i,j iff (i, j) ∈ RA and

there exists iπj, such that there is a derivation tree of the height h ≤ (p−1)

for the string l(π) and a context-free grammar GA = (N,Σ, P, A). The
statement of the lemma holds for k = p since the height h of this tree is
also less than or equal to p.
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Let A ∈ (a(p−1) × a(p−1))i,j. By the definition of the binary operation (·)
on arbitrary subsets, A ∈ (a(p−1) × a(p−1))i,j iff there are r, B ∈ a

(p−1)
i,r and

C ∈ a
(p−1)
r,j , such that (A → BC) ∈ P . Hence, by the inductive hypothesis,

there are iπ1r and rπ2j, such that (i, r) ∈ RB and (r, j) ∈ RC , and there
are the derivation trees TB and TC of heights h1 ≤ (p− 1) and h2 ≤ (p− 1)

for the strings w1 = l(π1), w2 = l(π2) and the context-free grammars GB,
GC respectively. Thus, the concatenation of paths π1 and π2 is iπj, where
(i, j) ∈ RA and there is a derivation tree of the height h = 1 +max(h1, h2),
shown in Figure 2, for the string w = l(π) and a context-free grammar GA.

A

TB TC

Figure 2: The derivation tree of the height h = 1+max(h1, h2) for the string
w = l(π), where TB and TC are the derivation trees for strings w1 and w2

respectively.

The statement of the lemma holds for k = p since the height h = 1 +

max(h1, h2) ≤ p. This completes the proof of the lemma. □

Theorem 2 Let D = (V,E) be a graph and let G = (N,Σ, P ) be a grammar.
Then for any i, j and for any non-terminal A ∈ N , A ∈ acfi,j iff (i, j) ∈ RA.

Proof: Since the matrix acf = a(1) ∪ a(2) ∪ · · · , for any i, j and for any
non-terminal A ∈ N , A ∈ acfi,j iff there is k ≥ 1, such that A ∈ a

(k)
i,j . By

the lemma 3, A ∈ a
(k)
i,j iff (i, j) ∈ RA and there is iπj, such that there is

a derivation tree of the height h ≤ k for the string l(π) and a context-free
grammar GA = (N,Σ, P, A). This completes the proof of the theorem. □
We can, therefore, determine whether (i, j) ∈ RA by asking whether

A ∈ acfi,j. Thus, we show how the context-free relations RA can be calculated
by computing the transitive closure acf of the matrix a.
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4.2 The algorithm
In this section, we introduce an algorithm for calculating the transitive

closure acf which was discussed in Section 4.1.
Let D = (V,E) be the input graph and G = (N,Σ, P ) be the input

grammar.

Algorithm 1 Context-free recognizer for graphs
1: function CONTEXTFREEPATHQUERYING(D, G)
2: n← the number of nodes in D

3: E ← the directed edge-relation from D

4: P ← the set of production rules in G

5: T ← the matrix n× n in which each element is ∅
6: for all (i, x, j) ∈ E do ▷ Matrix initialization
7: Ti,j ← Ti,j ∪ {A | (A→ x) ∈ P}

8: while matrix T is changing do
9: T ← T ∪ (T × T ) ▷ Transitive closure T cf calculation
10: return T

Note that the matrix initialization in lines 6-7 of the Algorithm 1 can
handle arbitrary graphD. For example, if a graphD contains multiple edges
(i, x1, j) and (i, x2, j) then both the elements of the set {A | (A→ x1) ∈ P}
and the elements of the set {A | (A→ x2) ∈ P} will be added to Ti,j.
We need to show that the Algorithm 1 terminates in a finite number

of steps. Since each element of the matrix T contains no more than |N |
non-terminals, the total number of non-terminals in the matrix T does not
exceed |V |2|N |. Therefore, the following theorem holds.

Theorem 3 Let D = (V,E) be a graph and let G = (N,Σ, P ) be a grammar.
The Algorithm 1 terminates in a finite number of steps.

Proof: It is sufficient to show, that the operation in the line 9 of the
Algorithm 1 changes the matrix T only finite number of times. Since this
operation can only add non-terminals to some elements of the matrix T ,
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but not remove them, it can change the matrix T no more than |V |2|N |
times. □
Denote the number of elementary operations executed by the algorithm

of multiplying two n × n Boolean matrices as BMM(n). According to
Valiant, the matrix multiplication operation in the line 9 of the Algorithm 1
can be calculated in O(|N |2BMM(|V |)). Denote the number of elementary
operations executed by the matrix union operation of two n × n Boolean
matrices as BMU(n). Similarly, it can be shown that the matrix union oper-
ation in the line 9 of the Algorithm 1 can be calculated in O(|N |2BMU(n)).
Since the line 9 of the Algorithm 1 is executed no more than |V |2|N | times,
the following theorem holds.

Theorem 4 Let D = (V,E) be a graph and let G = (N,Σ, P ) be a grammar.
The Algorithm 1 calculates the transitive closure T cf in O(|V |2|N |3(BMM(|V |)+
BMU(|V |))).

We also provide the worst-case example, for which the time complexity
in terms of the graph size provided by Theorem 4 cannot be improved. This
example is based on the context-free grammar G = (N,Σ, P ) where:

• the set of non-terminals N = {S};

• the set of terminals Σ = {a, b};

• the set of production rules P is presented on Figure 3.

0 : S → a S b
1 : S → a b

Figure 3: Production rules for the worst-case example.

Let the size |N | of the grammar G be a constant. The worst-case time
complexity is reached by running this query on the double-cyclic graph
where:

• one of the cycles having u = 2k + 1 edges labeled with a;
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• another cycle having v = 2k edges labeled with b;

• the two cycles are connected via a shared node m.

A small example of such graph with k = 1, u = 3, v = 2, and m = 0 is
presented on Figure 4.

1

2a

0

a

a 3b
b

Figure 4: An example of the graph for the worst-case time complexity.

The shortest path π from the node m to the node m, whose labeling
forms a string from the language L(GS) = {anbn;n ≥ 1}, has a length
l = 2 ∗ u ∗ v, since u = 2k + 1 and v = 2k are coprime, and string s, formed
by this path, consists of u ∗ v labels a and u ∗ v labels b. The string s = l(π)

has a derivation tree according to a context-free grammar GS of the minimal
height h = 2∗u∗v among all the paths from the nodem to the nodem in this
double-cyclic graph. Therefore, if we run the worst-case example query on
this graph, then the operation in the line 9 of the Algorithm 1 changes the
matrix T at least h = 2 ∗u ∗ v times. Hence, the Algorithm 1 computes this
query in O(|V |2(BMM(|V |) +BMU(|V |))), since |V | = (u+ v − 1) = 2 ∗ v
and h = 2 ∗ u ∗ v > 2 ∗ v ∗ v = |V |2/4 = O(|V |2).

4.3 An example
In this section, we provide a step-by-step demonstration of the proposed

algorithm. For this, we consider the classical same-generation query [1].
The example query is based on the context-free grammarG = (N,Σ, P )

where:

• The set of non-terminals N = {S}.
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• The set of terminals

Σ = {subClassOf, subClassOf−1, type, type−1}.

• The set of production rules P is presented in Figure 5.

0 : S → subClassOf−1 S subClassOf
1 : S → type−1 S type
2 : S → subClassOf−1 subClassOf
3 : S → type−1 type

Figure 5: Production rules for the example query grammar.

Since the proposed algorithm processes only grammars in Chomsky nor-
mal form, we first transform the grammar G into an equivalent grammar
G′ = (N ′,Σ′, P ′) in normal form, where:

• The set of non-terminals N ′ = {S, S1, S2, S3, S4, S5, S6}.

• The set of terminals

Σ′ = {subClassOf, subClassOf−1, type, type−1}.

• The set of production rules P ′ is presented in Figure 6.

0 : S → S1 S5

1 : S → S3 S6

2 : S → S1 S2

3 : S → S3 S4

4 : S5 → S S2

5 : S6 → S S4

6 : S1 → subClassOf−1
7 : S2 → subClassOf
8 : S3 → type−1
9 : S4 → type

Figure 6: Production rules for the example query grammar in normal form.

We run the query on a graph presented in Figure 7.

21



0

subClassOf-1
1type-1

2

type-1

subClassOf

type

Figure 7: An input graph for the example query.

We provide a step-by-step demonstration of the work with the given
graph D and grammar G′ of the Algorithm 1. After the matrix initialization
in lines 6-7 of the Algorithm 1, we have a matrix T0 presented in Figure 8.

T0 =

{S1} {S3} ∅
∅ ∅ {S3}
{S2} ∅ {S4}


Figure 8: The initial matrix for the example query.

Let Ti be the matrix T obtained after executing the loop in lines 8-9
of the Algorithm 1 i times. The calculation of the matrix T1 is shown in
Figure 9.

T0 × T0 =

∅ ∅ ∅
∅ ∅ {S}
∅ ∅ ∅


T1 = T0 ∪ (T0 × T0) =

{S1} {S3} ∅
∅ ∅ {S3, S}
{S2} ∅ {S4}


Figure 9: The first iteration of computing the transitive closure for the
example query.

When the algorithm at some iteration finds new paths in the graph D,
then it adds corresponding nonterminals to the matrix T . For example,
after the first loop iteration, non-terminal S is added to the matrix T . This
non-terminal is added to the element with a row index i = 1 and a column
index j = 2. This means that there is iπj (a path π from the node 1 to
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the node 2), such that S ∗−→ l(π). For example, such a path consists of two
edges with labels type−1 and type, and thus S ∗−→ type−1 type.
The calculation of the transitive closure is completed after k iterations

when a fixpoint is reached: Tk−1 = Tk. For the example query, k = 6 since
T6 = T5. The remaining iterations of computing the transitive closure are
presented in Figure 10.

T2 =

{S1} {S3} ∅
{S5} ∅ {S3, S, S6}
{S2} ∅ {S4}


T3 =

{S1} {S3} {S}
{S5} ∅ {S3, S, S6}
{S2} ∅ {S4}


T4 =

{S1, S5} {S3} {S, S6}
{S5} ∅ {S3, S, S6}
{S2} ∅ {S4}


T5 =

{S1, S5, S} {S3} {S, S6}
{S5} ∅ {S3, S, S6}
{S2} ∅ {S4}


Figure 10: Remaining states of the matrix T .

Thus, the result of the Algorithm 1 for the example query is the matrix
T5 = T6. Now, after constructing the transitive closure, we can construct
the context-free relations RA. These relations for each non-terminal of the
grammar G′ are presented in Figure 11.
By the context-free relation RS, we can conclude that there are paths

in a graph D only from the node 0 to the node 0, from the node 0 to the
node 2 or from the node 1 to the node 2, corresponding to the context-free
grammar GS. This conclusion is based on the fact that a grammar G′S is
equivalent to the grammar GS and L(GS) = L(G′S).
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RS = {(0, 0), (0, 2), (1, 2)},
RS1

= {(0, 0)},
RS2

= {(2, 0)},
RS3

= {(0, 1), (1, 2)},
RS4

= {(2, 2)},
RS5

= {(0, 0), (1, 0)},
RS6

= {(0, 2), (1, 2)}.

Figure 11: Context-free relations for the example query.

5 CFPQ using single-path query semantics
In this section, we show how the context-free path query evaluation

using the single-path query semantics can be reduced to the calculation of
matrix transitive closure acf and prove the correctness of this reduction.
At the first step, we show how the calculation of matrix transitive closure

acf which was discussed in Section 4.1 can be modified to compute the length
of some path iπj for all (i, j) ∈ RA, such that A ∗−→ l(π). This is sufficient
to solve the problem of context-free path query evaluation using the single-
path query semantics since the required path of a fixed length from the node
i to the node j can be found by a simple search and checking whether the
labels of this path form a string which can be derived from a non-terminal
A.
Let G = (N,Σ, P ) be a grammar and D = (V,E) be a graph. We

enumerate the nodes of the graph D from 0 to (|V | − 1). We initialize the
|V |×|V | matrix a with ∅. We associate each non-terminal in matrix a with
the corresponding path length. For convenience, each nonterminal A in the
ai,j is represented as a pair (A, k) where k is an associated path length. For
every i and j we set

ai,j = {(Ak, 1) | ((i, x, j) ∈ E) ∧ ((Ak → x) ∈ P )}

since initially all path lengths are equal to 1. Finally, we compute the
transitive closure acf and if non-terminal A is added to a

(p)
i,j by using the
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production rule (A → BC) ∈ P where (B, lB) ∈ a
(p−1)
i,k , (C, lC) ∈ a

(p−1)
k,j ,

then the path length lA associated with non-terminal A is calculated as
lA = lB + lC . Therefore (A, lA) ∈ a

(p)
i,j . Note that if some non-terminal A

with an associated path length l1 is in a
(p)
i,j , then the non-terminal A is not

added to the a(k)i,j with an associated path length l2 for all l2 ̸= l1 and k ≥ p.
For the transitive closure acf , the following statements hold.

Lemma 4 Let D = (V,E) be a graph, let G = (N,Σ, P ) be a grammar.
Then for any i, j and for any non-terminal A ∈ N , if (A, lA) ∈ a

(k)
i,j , then

there is iπj, such that A ∗−→ l(π) and the length of π is equal to lA.

Proof: (Proof by Induction)
Basis: Show that the statement of the lemma holds for k = 1. For any

i, j and for any non-terminal A ∈ N , (A, lA) ∈ a
(1)
i,j iff lA = 1 and there

is iπj that consists of a unique edge e from the node i to the node j and
(A→ x) ∈ P where x = l(π). Therefore there is iπj, such that A ∗−→ l(π) and
the length of π is equal to lA. Thus, it has been shown that the statement
of the lemma holds for k = 1.
Inductive step: Assume that the statement of the lemma holds for

any k ≤ (p − 1) and show that it also holds for k = p where p ≥ 2. For
any i, j and for any non-terminal A ∈ N , (A, lA) ∈ a

(p)
i,j iff (A, lA) ∈ a

(p−1)
i,j or

(A, lA) ∈ (a(p−1) × a(p−1))i,j since a(p) = a(p−1) ∪ (a(p−1) × a(p−1)).

Let (A, lA) ∈ a
(p−1)
i,j . By the inductive hypothesis, there is iπj, such that

A
∗−→ l(π) and the length of π is equal to lA. Therefore the statement of the

lemma holds for k = p.
Let (A, lA) ∈ (a(p−1) × a(p−1))i,j. By the definition, (A, lA) ∈ (a(p−1) ×

a(p−1))i,j iff there are r, (B, lB) ∈ a
(p−1)
i,r and (C, lC) ∈ a

(p−1)
r,j , such that

(A→ BC) ∈ P and lA = lB + lC . Hence, by the inductive hypothesis, there
are iπ1r and rπ2j, such that

(B
∗−→ l(π1)) ∧ (C

∗−→ l(π2)),

where the length of π1 is equal to lB and the length of π2 is equal to lC .
Thus, the concatenation of paths π1 and π2 is iπj, where A ∗−→ l(π) and the
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length of π is equal to lA. Therefore the statement of the lemma holds for
k = p and this completes the proof of the lemma. □

Theorem 5 Let D = (V,E) be a graph and let G = (N,Σ, P ) be a grammar.
Then for any i, j and for any non-terminal A ∈ N , if (A, lA) ∈ acfi,j, then
there is iπj, such that A ∗−→ l(π) and the length of π is equal to lA.

Proof: Since the matrix acf = a(1)∪a(2)∪· · · , for any i, j and for any non-
terminal A ∈ N , if (A, lA) ∈ acfi,j, then there is k ≥ 1, such that A ∈ a

(k)
i,j . By

the lemma 4, if (A, lA) ∈ a
(k)
i,j , then there is iπj, such that A

∗−→ l(π) and the
length of π is equal to lA. This completes the proof of the theorem. □
By the theorem 2, we can determine whether (i, j) ∈ RA by asking

whether (A, lA) ∈ acfi,j for some lA. By the theorem 5, there is iπj, such that
A
∗−→ l(π) and the length of π is equal to lA. Therefore, we can find such a

path π of the length lA from the node i to the node j by a simple search.
Thus, we show how the context-free path query evaluation using the single-
path query semantics can be reduced to the calculation of matrix transitive
closure acf . Note that the time complexity of the algorithm for context-free
path querying w.r.t. the single-path semantics no longer depends on the
Boolean matrix multiplications since we modify the matrix representation
and operations on the matrix elements.
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6 A path querying algorithm using conjunc-
tive grammars

In this section, we show how the path querying using conjunctive gram-
mars and relational query semantics can be reduced to the calculation of
the matrix transitive closure. We propose an algorithm that calculates the
over-approximation of all conjunctive relations RA, since the query eval-
uation using the relational query semantics and conjunctive grammars is
undecidable problem [13].
We define a conjunctive matrix multiplication, a ◦ b = c, where a and

b are matrices of the suitable size that have subsets of N as elements, as
ci,j = {A | ∃(A → B1C1 & . . .& BmCm) ∈ P such that (Bk, Ck) ∈ di,j},
where di,j =

∪n
k=1 ai,k × bk,j and (×) is the Cartesian product.

We define the conjunctive transitive closure of a square matrix a as
aconj = a(1)∪a(2)∪· · · where a(i) = a(i−1)∪ (a(i−1) ◦a(i−1)), i ≥ 2 and a(1) = a.

6.1 Reducing conjunctive path querying to transitive
closure

In this section, we show how the over-approximation of all conjunctive
relations RA can be calculated by computing the transitive closure aconj.
Let G = (N,Σ, P ) be a conjunctive grammar and D = (V,E) be a graph.

We number the nodes of the graphD from 0 to (|V |−1) and we associate the
nodes with their numbers. We initialize |V | × |V | matrix b with ∅. Further,
for every i and j we set bi,j = {Ak | ((i, x, j) ∈ E) ∧ ((Ak → x) ∈ P )}.
Finally, we compute the conjunctive transitive closure bconj = b(1)∪ b(2)∪· · ·
where b(i) = b(i−1) ∪ (b(i−1) ◦ b(i−1)), i ≥ 2 and b(1) = b. For the conjunctive
transitive closure bconj, the following statements holds.

Lemma 5 Let D = (V,E) be a graph, let G = (N,Σ, P ) be a conjunctive
grammar. Then for any i, j and for any non-terminal A ∈ N , if (i, j) ∈ RA

and iπj, such that there is a derivation tree according to the string l(π) and
a conjunctive grammar GA = (N,Σ, P, A) of the height h ≤ k then A ∈ b

(k)
i,j .
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Proof: (Proof by Induction)
Basis: Show that the statement of the lemma holds for k = 1. For any

i, j and for any non-terminal A ∈ N , if (i, j) ∈ RA and iπj, such that there
is a derivation tree according to the string l(π) and a conjunctive grammar
GA = (N,Σ, P, A) of the height h ≤ 1 then there is edge e from node i to
node j and (A → x) ∈ P where x = l(π). Therefore A ∈ b

(1)
i,j and it has

been shown that the statement of the lemma holds for k = 1.
Inductive step: Assume that the statement of the lemma holds for any

k ≤ (p−1) and show that it also holds for k = p where p ≥ 2. Let (i, j) ∈ RA

and iπj, such that there is a derivation tree according to the string l(π) and
a conjunctive grammar GA = (N,Σ, P, A) of the height h ≤ p.
Let h < p. Then by the inductive hypothesis A ∈ b

(p−1)
i,j . Since b(p) =

b(p−1) ∪ (b(p−1) ◦ b(p−1)) then A ∈ b
(p)
i,j and the statement of the lemma holds

for k = p.
Let h = p. Let A→ B1C1 & . . .& BmCm be the rule corresponding to the

root of the derivation tree from the assumption of the lemma. Therefore the
heights of all subtrees corresponding to non-terminals B1, C1, . . . Bm, Cm are
less than p. Then by the inductive hypothesis Bx ∈ b

(p−1)
i,tx

and Cx ∈ b
(p−1)
tx,j

,
for x = 1 . . .m and tx ∈ V . Let d be a matrix that have subsets of N ×N

as elements, where di,j =
∪n

t=1 b
(p−1)
i,t × b

(p−1)
t,j . Therefore (Bx, Cx) ∈ di,j, for

x = 1 . . .m. Since b(p) = b(p−1) ∪ (b(p−1) ◦ b(p−1)) and (b(p−1) ◦ b(p−1))i,j =

{A | ∃(A → B1C1 & . . .& BmCm) ∈ P such that (Bk, Ck) ∈ di,j} then A ∈
b
(p)
i,j and the statement of the lemma holds for k = p. This completes the
proof of the lemma. □

Theorem 6 Let D = (V,E) be a graph and let G = (N,Σ, P ) be a con-
junctive grammar. Then for any i, j and for any non-terminal A ∈ N , if
(i, j) ∈ RA then A ∈ bconji,j .

Proof: By the lemma 5, if (i, j) ∈ RA then A ∈ b
(k)
i,j for some k, such that

iπj with a derivation tree according to the string l(π) and a conjunctive
grammar GA = (N,Σ, P, A) of the height h ≤ k. Since the matrix bconj =

b(1) ∪ b(2) ∪ · · · , then for any i, j and for any non-terminal A ∈ N , if A ∈ b
(k)
i,j
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for some k ≥ 1 then A ∈ bconji,j . Therefore, if (i, j) ∈ RA then A ∈ bconji,j . This
completes the proof of the theorem. □
Thus, we show how the over-approximation of all conjunctive relations

RA can be calculated by computing the conjunctive transitive closure bconj
of the matrix b.

6.2 The algorithm
In this section we introduce an algorithm for calculating the conjunctive

transitive closure bconj which was discussed in Section 6.1.
The following algorithm takes on input a graph D = (V,E) and a con-

junctive grammar G = (N,Σ, P ).

Algorithm 2 Conjunctive recognizer for graphs
1: function CONJUNCTIVEGRAPHPARSING(D, G)
2: n← a number of nodes in D

3: E ← the directed edge-relation from D

4: P ← a set of production rules in G

5: T ← a matrix n× n in which each element is ∅
6: for all (i, x, j) ∈ E do ▷ Matrix initialization
7: Ti,j ← Ti,j ∪ {A | (A→ x) ∈ P}

8: while matrix T is changing do
9: T ← T ∪ (T ◦ T ) ▷ Transitive closure calculation
10: return T

Similar to the case of the context-free grammars we can show that the
Algorithm 2 terminates in a finite number of steps. Since each element of
the matrix T contains no more than |N | non-terminals, then total number
of non-terminals in the matrix T does not exceed |V |2|N |. Therefore, the
following theorem holds.

Theorem 7 Let D = (V,E) be a graph and let G = (N,Σ, P ) be a con-
junctive grammar. Algorithm 2 terminates in a finite number of steps.
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Proof: It is sufficient to show, that the operation in line 9 of the Al-
gorithm 2 changes the matrix T only finite number of times. Since this
operation can only add non-terminals to some elements of the matrix T ,
but not remove them, it can change the matrix T no more than |V |2|N |
times. □

6.3 An example
In this section, we provide a step-by-step demonstration of the proposed

algorithm for path querying using conjunctive grammars. The example
query is based on the conjunctive grammar G = (N,Σ, P ) in binary normal
form where:

• The set of non-terminals N = {S,A,B,C,D}.

• The set of terminals Σ = {a, b, c}.

• The set of production rules P is presented in Figure 12.

0 : S → AB & DC
1 : A → a
2 : B → BC
3 : B → b
4 : C → c
5 : D → AD
6 : D → b

Figure 12: Production rules for the conjunctive example query grammar.

The conjunct AB generates the language LAB = {abc∗} and the conjunct
DC generates the language LDC = {a∗bc}. Thus, the language generated by
the conjunctive grammar GS = (N,Σ, P, S) is L(GS) = LAB ∩LDC = {abc}.
We tun the query on a graph presented in Figure 13.
We provide a step-by-step demonstration of the work with the given

graph D and grammar G of the Algorithm 2. After the matrix initialization
in lines 6-7 of the Algorithm 2, we have a matrix T0 presented in Figure 14.
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Figure 13: An input graph for the conjunctive example query.

T0 =



∅ {A} ∅ ∅ ∅ ∅ ∅
∅ ∅ {B,D} ∅ ∅ {A} ∅
∅ ∅ ∅ {C} ∅ ∅ ∅
∅ ∅ ∅ ∅ {C} ∅ ∅
∅ ∅ ∅ ∅ ∅ ∅ ∅
∅ ∅ ∅ ∅ ∅ ∅ {B,D}
∅ ∅ ∅ ∅ {C} ∅ ∅


Figure 14: The initial matrix for the example query.

Let Ti be the matrix T obtained after executing the loop in lines 8-9 of
the Algorithm 2 i times. To compute the matrix T1 we need to compute
the matrix d where di,j =

∪n
k=1 T0i,k × T0i,k. The matrix d for the first loop

iteration is presented in Figure 15. The matrix T1 = T1 = T0 ∪ (T0 ◦ T0) is
shown in Figure 16.

∅ ∅ {(A,B), (A,D)} ∅ ∅ ∅ ∅
∅ ∅ ∅ {(B,C), (D,C)} ∅ ∅ {(A,B), (A,D)}
∅ ∅ ∅ ∅ {(C,C)} ∅ ∅
∅ ∅ ∅ ∅ ∅ ∅ ∅
∅ ∅ ∅ ∅ ∅ ∅ ∅
∅ ∅ ∅ ∅ {(B,C), (D,C)} ∅ ∅
∅ ∅ ∅ ∅ ∅ ∅ ∅


Figure 15: The matrix d for the first loop iteration.

When the algorithm at some iteration finds new paths from the node
i to the node j for all conjuncts of some production rule, then it adds
nonterminal from the left side of this rule to the set Ti,j.
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T1 =



∅ {A} {D} ∅ ∅ ∅ ∅
∅ ∅ {B,D} {B} ∅ {A} {D}
∅ ∅ ∅ {C} ∅ ∅ ∅
∅ ∅ ∅ ∅ {C} ∅ ∅
∅ ∅ ∅ ∅ ∅ ∅ ∅
∅ ∅ ∅ ∅ {B} ∅ {B,D}
∅ ∅ ∅ ∅ {C} ∅ ∅


Figure 16: The initial matrix for the example query.

The calculation of the transitive closure is completed after k iterations
when a fixpoint is reached: Tk−1 = Tk. For this example, k = 4 since
T4 = T3. The remaining iterations of computing the transitive closure are
presented in Figure 17.
Thus, the result of the Algorithm 2 for the example query is the matrix

T4 = T3. Now, after constructing the transitive closure, we can construct
the over-approximations R′A of the conjunctive relations RA. These approxi-
mations for each non-terminal of the grammar G are presented in Figure 18.
This example demonstrates that it is not always possible to obtain an

exact solution. For example, a pair of nodes (0, 4) belongs to R′S, although
there is no path from the node 0 to the node 4, which forms a string derived
from the nonterminal S (only the string abc can be derived from the nonter-
minal S). Extra pairs of nodes are added if there are different paths from
the node i to the node j, which in summary correspond to all conjuncts
of one production rule, but there is no path from the node i to the node
j, which at the same time would correspond to all conjuncts of this rule.
For example, for the conjuncts of the rule S → AB & DC, there is a path
from the node 0 to the node 4 forming the string abcc, and there is also
a path from the node 0 to the node 4 forming the string aabc. The first
path corresponds to the conjunct AB, since the string abcc belongs to the
language LAB = {abc∗}, and the second path corresponds to the conjunct
DC, since the string aabc belongs to the language LDC = {a∗bc}. However,
it is obvious that there is no path from the node 0 to the node 4, which
forms the string abc.
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T2 =



∅ {A} {D} {S} ∅ ∅ {D}
∅ ∅ {B,D} {B} {S,B} {A} {D}
∅ ∅ ∅ {C} ∅ ∅ ∅
∅ ∅ ∅ ∅ {C} ∅ ∅
∅ ∅ ∅ ∅ ∅ ∅ ∅
∅ ∅ ∅ ∅ {B} ∅ {B,D}
∅ ∅ ∅ ∅ {C} ∅ ∅



T3 =



∅ {A} {D} {S} {S} ∅ {D}
∅ ∅ {B,D} {B} {S,B} {A} {D}
∅ ∅ ∅ {C} ∅ ∅ ∅
∅ ∅ ∅ ∅ {C} ∅ ∅
∅ ∅ ∅ ∅ ∅ ∅ ∅
∅ ∅ ∅ ∅ {B} ∅ {B,D}
∅ ∅ ∅ ∅ {C} ∅ ∅



T4 =



∅ {A} {D} {S} {S} ∅ {D}
∅ ∅ {B,D} {B} {S,B} {A} {D}
∅ ∅ ∅ {C} ∅ ∅ ∅
∅ ∅ ∅ ∅ {C} ∅ ∅
∅ ∅ ∅ ∅ ∅ ∅ ∅
∅ ∅ ∅ ∅ {B} ∅ {B,D}
∅ ∅ ∅ ∅ {C} ∅ ∅


Figure 17: Remaining states of the matrix T .

R′S = {(0, 3), (0, 4), (1, 4)}, (1)
R′A = {(0, 1), (1, 5)}, (2)
R′B = {(1, 2), (1, 3), (1, 4), (5, 4), (5, 6)}, (3)
R′C = {(2, 3), (3, 4), (6, 4)}, (4)
R′D = {(0, 2), (0, 6), (1, 2), (1, 6), (5, 6)}. (5)

Figure 18: The over-approximations of the conjunctive relations for the
example query.
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7 Evaluation
In this work, we do not estimate the practical value of the algorithm

for the context-free path querying w.r.t. the single-path query semantics,
since this algorithm have similar complexity as an algortihm for relational
query semantics but it depends significant on the implementation of the
path searching.
All tests were run on a PC with the following characteristics:

• OS: Microsoft Windows 10 Pro

• System Type: x64-based PC

• CPU: Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz, 3601 Mhz, 4
Core(s), 4 Logical Processor(s)

• RAM: 16 GB

• GPU: NVIDIA GeForce GTX 1070

– CUDA Cores: 1920
– Core clock: 1556 MHz
– Memory data rate: 8008 MHz
– Memory interface: 256-bit
– Memory bandwidth: 256.26 GB/s
– Dedicated video memory: 8192 MB GDDR5

7.1 CFPQ using relational query semantics
To show the practical applicability of the algorithm for context-free path

querying w.r.t. the relational query semantics, we implement this algorithm
using a variety of optimizations and apply these implementations to the
navigation query problem for a dataset of popular ontologies taken from [9].
We also compare the performance of our implementations with existing
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analogs from [11, 9]. These analogs use more complex algorithms, while
our algorithm uses only simple matrix operations.
Since the Algorithm 1 works with graphs, each RDF file from a dataset

was converted to an edge-labeled directed graph as follows. For each triple
(o, p, s) from an RDF file, we added edges (o, p, s) and (s, p−1, o) to the graph.
We also constructed synthetic graphs g1, g2 and g3, simply repeating the
existing graphs.
We denote the implementation of the algorithm from a paper [11] as

GLL. The Algorithm 1 is implemented in F# programming language [30]
and is available on GitHub1. We denote our implementations of the Algo-
rithm 1 as follows:

• dGPU (dense GPU) — an implementation using row-major order for
general matrix representation and a GPU for matrix operations cal-
culation. For calculations of matrix operations on a GPU, we use a
wrapper for the CUBLAS library from the managedCuda2 library.

• sCPU (sparse CPU) — an implementation using CSR format for
sparse matrix representation and a CPU for matrix operations cal-
culation. For sparse matrix representation in CSR format, we use the
Math.Net Numerics3 package.

• sGPU (sparse GPU) — an implementation using the CSR format
for sparse matrix representation and a GPU for matrix operations
calculation. For calculations of the matrix operations on a GPU,
where matrices represented in a CSR format, we use a wrapper for
the CUSPARSE library from the managedCuda library.

We omit dGPU performance on graphs g1, g2 and g3 since a dense matrix
representation leads to a significant performance degradation with the graph
size growth.

1GitHub repository of the YaccConstructor project: https://github.com/YaccConstructor/
YaccConstructor.

2GitHub repository of the managedCuda library: https://kunzmi.github.io/managedCuda/.
3The Math.Net Numerics WebSite: https://numerics.mathdotnet.com/.
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We evaluate two classical same-generation queries [1] which, for exam-
ple, are applicable in bioinformatics.
Query 1 is based on the grammar G1

S for retrieving concepts on the
same layer, where:

• The grammar G1 = (N 1,Σ1, P 1).

• The set of non-terminals N 1 = {S}.

• The set of terminals

Σ1 = {subClassOf, subClassOf−1, type, type−1}.

• The set of production rules P 1 is presented in Figure 19.

0 : S → subClassOf−1 S subClassOf
1 : S → type−1 S type
2 : S → subClassOf−1 subClassOf
3 : S → type−1 type

Figure 19: Production rules for the query 1 grammar.

The grammar G1 is transformed into an equivalent grammar in normal
form, which is necessary for the Algorithm 1. This transformation is the
same as in Section 4.3. Let RS be a context-free relation for a start non-
terminal in the transformed grammar.
The result of query 1 evaluation is presented in Table 1, where #triples is

a number of triples (o, p, s) in an RDF file, and #results is a number of pairs
(n,m) in the context-free relation RS. We can determine whether (i, j) ∈ RS

by asking whether S ∈ acfi,j, where acf is a transitive closure calculated by
the Algorithm 1. All implementations in Table 1 have the same #results
and demonstrate up to 1000 times better performance as compared to the
algorithm presented in [9] for Q1. Our implementation sGPU demonstrates
a better performance than GLL. We also can conclude that acceleration
from the GPU increases with the graph size growth.
Query 2 is based on the grammar G2

S for retrieving concepts on the
adjacent layers, where:
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Table 1: Evaluation results for Query 1 (time in ms)

Ontology #triples #results GLL dGPU sCPU sGPU
skos 252 810 10 56 14 12

generations 273 2164 19 62 20 13
travel 277 2499 24 69 22 30

univ-bench 293 2540 25 81 25 15
atom-primitive 425 15454 255 190 92 22
biomedical 459 15156 261 266 113 20

foaf 631 4118 39 154 48 9
people-pets 640 9472 89 392 142 32
funding 1086 17634 212 1410 447 36
wine 1839 66572 819 2047 797 54
pizza 1980 56195 697 1104 430 24
g1 8688 141072 1926 — 26957 82
g2 14712 532576 6246 — 46809 185
g3 15840 449560 7014 — 24967 127

• The grammar G2 = (N 2,Σ2, P 2).

• The set of non-terminals N 2 = {S,B}.

• The set of terminals

Σ2 = {subClassOf, subClassOf−1}.

• The set of production rules P 2 is presented in Figure 20.

0 : S → B subClassOf
1 : S → subClassOf
2 : B → subClassOf−1 B subClassOf
3 : B → subClassOf−1 subClassOf

Figure 20: Production rules for the query 2 grammar.

The grammar G2 is transformed into an equivalent grammar in normal
form. Let RS be a context-free relation for a start non-terminal in the
transformed grammar.
The result of the query 2 evaluation is presented in Table 2. All imple-

mentations in Table 2 have the same #results. On almost all graphs sGPU
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Table 2: Evaluation results for Query 2 (time in ms)

Ontology #triples #results GLL dGPU sCPU sGPU
skos 252 1 1 10 2 1

generations 273 0 1 9 2 0
travel 277 63 1 31 7 10

univ-bench 293 81 11 55 15 9
atom-primitive 425 122 66 36 9 2
biomedical 459 2871 45 276 91 24

foaf 631 10 2 53 14 3
people-pets 640 37 3 144 38 6
funding 1086 1158 23 1246 344 27
wine 1839 133 8 722 179 6
pizza 1980 1262 29 943 258 23
g1 8688 9264 167 — 21115 38
g2 14712 1064 46 — 10874 21
g3 15840 10096 393 — 15736 40

demonstrates a better performance than GLL implementation and we also
can conclude that acceleration from the GPU increases with the graph size
growth.
As a result, we conclude that the Algorithm 1 can be applied to some

real-world problems and it allows us to speed up computations by means of
GPGPU.

7.2 A path querying using conjunctive grammar
To show the practical applicability of the algorithm for path query eval-

uation w.r.t. conjunctive grammars and the relational query semantics, we
implement the Algorithm 2 on a CPU and on a GPU. Also, we apply these
implementations to some classical conjunctive grammars [20] and synthetic
graphs.
Algorithm 2 is implemented in F# programming language [30] and is

available on GitHub4. We denote our implementations of the Algorithm 2
as follows:

4GitHub repository of the YaccConstructor project: https://github.com/YaccConstructor/
YaccConstructor.

38

https://github.com/YaccConstructor/YaccConstructor
https://github.com/YaccConstructor/YaccConstructor


• onCPU— an implementation using CSR format for sparse matrix rep-
resentation and a CPU for matrix operations calculation. For sparse
matrix representation in CSR format, we use the Math.Net Numerics
package.

• onGPU — an implementation using the CSR format for sparse ma-
trix representation and a GPU for matrix operations calculation. For
calculations of the matrix operations on a GPU, where matrices repre-
sented in a CSR format, we use a wrapper for the CUSPARSE library
from the managedCuda library.

Comparison of the performance of this implementations allows us to
determine the efficiency of the GPU acceleration of the Algorithm 2.
We evaluate two queries which correspond to two classical conjunctive

grammars.
Query 1 is based on the grammar G3

S, which generates the language
{anbncn|n > 0}, where:

• The grammar G3 = (N 3,Σ3, P 3).

• The set of non-terminals N 3 = {S,A,B,C,D}.

• The set of terminals Σ3 = {a, b, c}.

• The set of production rules P 3 is presented in Figure 21.

0 : S → AB & DC
1 : A → AA | a
2 : B → bBc | bc
3 : C → CC | c
4 : D → aDb | ab

Figure 21: Production rules for the query 1 conjunctive grammar.

The grammar G3 is transformed into an equivalent grammar in nor-
mal form, which is necessary for the Algorithm 2. Let R′S be an over-
approximation of the conjunctive relation for a start non-terminal in the
transformed grammar, which is computed by the Algorithm 2.
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Table 3: Evaluation results for conjunctive Query 1 (time in ms)

|V| |E| #results onCPU(in ms) onGPU(in ms)
100 25 0 2 7
100 75 0 10 20
100 200 79 101 213
1000 250 1 265 25
1000 750 13 2781 102
1000 2000 731 12050 347
10000 2500 4 26595 41
10000 7500 136 241087 213
10000 20000 4388 1305177 1316

Table 4: Evaluation results for conjunctive Query 2 (time in ms)

|V| |E| #results onCPU(in ms) onGPU(in ms)
100 25 9 14 67
100 75 29 114 129
100 100 47 254 483
1000 250 82 2566 127
1000 750 279 21394 530
1000 1000 438 64725 1951
10000 2500 829 268843 257
10000 7500 2796 3380046 1675
10000 10000 27668 — 3017

The result of query 1 evaluation is presented in Table 3, where |V | is
a number of nodes in the graph, |E| is a number of edges, and #results
is a number of pairs (n,m) in the approximation R′Sc of the conjunctive
relation RS. The implementation which uses a CPU demonstrates a better
performance only on some small graphs. We can conclude that acceleration
from the GPU increases with the graph size growth.
Query 2 is based on the grammar G4

S, which generates the language
{wcw|w ∈ {a, b}∗}, where:

• The grammar G4 = (N 4,Σ4, P 4).

• The set of non-terminals N 4 = {S,A,B,C,D,E}.

• The set of terminals Σ4 = {a, b, c}.
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• The set of production rules P 4 is presented in Figure 22.

0 : S → C & D
1 : C → aCa | aCb | bCa | bCb | c
2 : D → aA & aD | bB & bD | cE
3 : A → aAa | aAb | bAa | bAb | cEa
4 : B → aBa | aBb | bBa | bBb | cEb
5 : E → aE | bE | ε

Figure 22: Production rules for the query 2 conjunctive grammar.

The grammar G4 is transformed into an equivalent grammar in normal
form. Let R′S be an over-approximation of the conjunctive relation for a
start non-terminal in the transformed grammar, which is computed by the
Algorithm 2.
The result of the query 2 evaluation is presented in Table 4. On almost

all graphs onGPU implementation demonstrates a better performance than
onCPU implementation and we also can conclude that acceleration from
the GPU increases with the graph size growth.
As a result, we conclude that the Algorithm 2 can be applied to some

real-world problems and it allows us to speed up computations by means of
GPGPU.
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8 Conclusion
In this work, we have shown how the context-free path query evalua-

tion w.r.t. the relational and the single-path query semantics, and the path
query evaluation w.r.t. the conjunctive grammars and relational query se-
mantics can be reduced to the calculation of matrix transitive closure. In
addition, we introduced an algorithms for computing this transitive closure,
which allows us to efficiently apply GPGPU computing techniques. Also,
we provided a formal proof of the correctness of the proposed algorithms.
Finally, we have shown the practical applicability of the proposed algo-
rithms by running different implementations of this algorithms on classical
queries.
We can identify several open problems for further research. In this work,

we have considered only two semantics of context-free path querying but
there are other important semantics, such as all-path query semantics [14]
which requires presenting all paths for all triples (A,m, n). Context-free
path querying implemented with the algorithm [11] can answer the queries
in the all-path query semantics by constructing a parse forest. It is possible
to construct a parse forest for a linear input by matrix multiplication [23].
Whether it is possible to generalize this approach for a graph input is an
open question.
In our algorithm, we calculate the matrix transitive closure naively, but

there are algorithms for the transitive closure calculation, which are asymp-
totically more efficient. Therefore, the question is whether it is possible to
apply these algorithms for the matrix transitive closure calculation to the
problem of context-free path querying.
Also, there are Boolean grammars [21], which have more expressive

power than context-free and conjunctive grammars. Boolean path query-
ing problems are undecidable [13] but our algorithm for path querying with
conjunctive grammars can be trivially generalized to work on Boolean gram-
mars because parsing with Boolean grammars can be expressed by matrix
multiplication [23]. It is not clear what a result of our algorithm applied
to this grammars would look like. Our hypothesis is that it would produce
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some upper approximation of a solution.
From a practical point of view, matrix multiplication in the main loop of

the proposed algorithms may be performed on different GPGPU indepen-
dently. It can help to utilize the power of multi-GPU systems and increase
the performance of the path querying with context-free and conjunctive
grammars.
There is an algorithm [16] for transitive closure calculation on directed

graphs which generalized to handle graph sizes inherently larger than the
DRAM memory available on the GPU. Therefore, the question is whether it
is possible to apply this approach to the matrix transitive closure calculation
in the path querying problem.
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