CankT-IleTrepbyprckuit I'ocymapcTBeHHbBIT Y HUBEPCUTET

Maremarudeckoe obecriedeHre u aJIMIHUCTPUPOBaHNE NH(POPMAITMOHHBIX CEeTei
Kadeapa cucreMHOTO MporpaMMupPOBaHUS

Kupruzos I'puropunii BajmepreBud

bnbanorexka mporpaMMHIpPOBAHII
reTEePOreHHBIX BCTPANBAEMBIX apXUTEKTY]P

bakamaBpckas pabora

Hayunblit pyKoOBOIUTE B!
cr. mpen. 4. A. Kupuenko

Penenzent:
nnkenep-niporpammuct OO0 "Nuaresmmxkeit Jladc”
1. A. MopasunoB

Cankt-IleTepbypr
2018

SAINT PETERSBURG STATE UNIVERSITY

Software and Administration of Information Systems
Software Engineering Department

Grigorii Kirgizov

Programming Library for Heterogeneous
Embedded Architectures

Graduation Thesis

Scientific supervisor:
senior lecturer Iakov Kirilenko

Reviewer:
software engineer OOO «IntelliJ Labs»
Dmitrii Mordvinov

Saint Petersburg
2018

Contents
Introduction

1. Problem Statement

2. Similar Work
2.1. OpenCL & CUDA
2.2. Texas Instruments MultiCore SDK
2.3. Delite
2.4. LLVM ORC

3. Discussion of the Previous Work
3.1. Inherited Decisions

3.2. Shortcomings
4. System Architecture

5. DSL
5.1. Design
5.2. Description and Examples
0.2.1. Typeso
5.2.2. Generative Programming
5.2.3. Comma Operator and Variables.
5.2.4. Generic Functions
5.2.5. FError Messages
5.3. Implementation Details
5.3.1. Generic Functions
5.3.2. Static Dispatch in Translation.
5.3.3. Dependent Behavior of DSL Constructs

6. Subsystems description
6.1. MemoryManager
6.2. CodeLoader
6.3. Connection Module: Host

© © o oo @

11
11
12

14

16
16
16
17
18
19
20
21
21
21
22
23

6.4. Connection Module: Target Runtime
7. Approbation
8. Demonstration

9. Discussion
9.1. Library Applicability

9.2. Limitations
Conclusion
Appendix

References

27

28

30
30
30

31

32

36

Introduction

Embedded systems have been in a widespread use a long time, and today
they become even more relevant because of the rapid development and
adoption of new application fields, for example, Internet-of-Things, «smart
houses» and robotics.

Many of the embedded systems used in these areas have heterogeneous
architectures due to nature of their tasks. Typically, they consist of one
primary, more powerful processor which executes the main program and
performs common control, and one or several secondary microcontrollers or
processors that provide read/write access to sensors and peripheral devices
or may perform some other special functions. Examples of such systems
may be: Raspberry Pi (main) + Arduino with Atmel AVR (peripheral) and
Odroid XU4 (main) + stm32f4 microcontroller (peripheral).

Heterogeneity of these systems causes noticeable overhead. Traditional
development workflow requires use of IDEs and toolchains that are specific
for each part of the system. This need to develop each part of the system
in a separate project using a different set of platform-specific tools makes
system development processes more complex and expensive. The amounts
of resources required for support and changes also grow.

The efficiency of the system suffers too. Due to specificities of each mi-
crocontroller and their limited hardware capabilities they often have only
basic firmware, which only capabilities are reading sensors, communicating
results back to the primary processor, receiving data and control commands
from it and writing the received data to special registers of peripheral de-
vices. All core program logic is contained on the primary processor, and,
as secondary processors/microcontrollers do not contain even a part of this
logic, constant communication between them is unavoidable (because of the
nature of control cycle: request sensor data, wait for it to arrive, compute
control output, send it back to the secondary processors, repeat).

Another problem is a dynamic configuration of heterogeneous systems
for their operating environment. Some types of embedded heterogeneous

systems can be deployed in a wide range of environments with various con-

ditions. When their operation depends on these conditions, developers of
programs for such systems must anticipate in the code all possible con-
ditions. It may be implemented through constant monitoring of the envi-
ronment. Another alternative is on-place configuration or tuning of each
particular system. But it may not be possible due to nature of the task or
too often or rapid (for manual operating) changes of the environment. A
variation of this scenario is a runtime configuration for specific peripheral
devices (e.g. different models of sensors and actuators).

This work is based on preliminary results of [6].

1 Problem Statement

The goal of this work is to design and implement a system for pro-
gramming heterogeneous embedded platforms that provides a possibility of
dynamic configuration and simplifies software development by proposing a
unified programming model.

This goal has been decomposed on the following tasks:

Conduct a survey.

Analyze existing system implementation.

Redesign the system.

Implement according to the new architecture:

— independent DSL subsystem:;

— embedded architectures programming library.

Conduct a system approbation.

2 Similar Work

The difficulties which heterogeneous systems cause are not unique for
the embedded software engineering. Programming of heterogeneous systems
is an old problem, and there’re several conceptual approaches to aforemen-
tioned difficulties.

2.1 OpenCL & CUDA

The most known area that faces it is programming with graphical pro-
cessors. In this case, heterogeneous system consists of CPU and one or more
GPUs. (The case of graphics programming, i.e. using shaders and graphics
pipelines, is further from heterogeneous programming and is not considered
here.) It is an old problem in this field: how to effectively and, not less im-
portantly, conveniently use GPU in usual, CPU-centric programs? There
are two main examples of systems that answer this question: Open Com-
puting Language (OpenCL) [10] and CUDA framework from Nvidia [7].
Both these frameworks propose a use of C and C++ languages extended
with special functions and attributes for writing device code (code to be
executed on secondary processors). It can be written, depending on user’s
aims and requirements, either in separate files or in the main program files
together with usual C/C++ host code that is intended to be executed on
CPU. OpenCL uses dynamic compilation (at runtime) of device code; some
device vendors provide offline compilers for their devices (for example, Intel
Code Builder for OpenCL API). CUDA similarly provides both possibili-
ties: Nvidia has an offline compiler called NVCC and a runtime compilation
library NVRTC.

2.2 Texas Instruments MultiCore SDK

Multicore Software Development Kit [9]—is a platform that simpli-
fies programming for heterogeneous systems of TI Keystone architecture
(ARM+DSP kind of systems). It helps developers by providing common
reusable components, support for SYS/BIOS and LHOS (Linux High Level

8

OS), API for programming DSP, integration with IDE Code Composer
Studio and through other means.

Although it is a very helpful tool, that offers a convenient programming
environment, it is aimed only at the specific family of heterogeneous systems

and doesn’t solve the problems of dynamic configuration.

2.3 Delite

Another area that this work touches is the ideas of generative, multi-
stage programming and runtime code generation. A good discussion of gen-
eral motivations and trade-offs behind these ideas, as well as examples of
some actual realizations and a number of references provides [3].

Among their examples Delite—a heterogeneous parallel framework for
domain-specific languages [2,11]—is of particular interest. Delite’s focus is
on the performance of parallel heterogeneous systems, e.g. mixed CPU/GPU
architectures and clusters. It is built on top of Lightweight Modular Staging
(LMS) [8] system, that makes use of a form of metaprogramming to con-
struct a symbolic representation of a DSL program. LMS provides a basis
for DSLs embedded in Scala. On top of this layer, Delite is structured into
a compiler framework and a runtime component. The framework provides
primitives for parallel operations and generates Scala, CUDA or C+- code
from DSLs.

Although both Delite framework and the presented system start from
the same idea of multi-stage programming, they significantly differ in the
approaches and application domains. Most importantly, presented system
uses dynamic code generation and thus employ the generative programming
at runtime to achieve dynamic optimizations. The authors of Delite, on the
other hand, require static compilation of DSLs—they promote the use of

additional compilation stage to perform domain-specific optimizations.

2.4 LLVM ORC

LLVM ORC (On-Request Compiler) [4]—is a subsystem of the LLVM

framework [5] for Just-In-Time (JIT) compilation. Thanks to separation

9

between the notions of a JIT-server and a JIT-client it allows to organize
remote JIT compilation on heterogeneous platforms.

In principle, it can help to solve the problems of dynamic configuration
and optimizations. But it is not suitable for embedded systems because, in
general, peripheral processors and microcontrollers are low-powerful devices
and can’t run a full-fledged JIT server with its dependencies. Moreover, they
don’t need most of its functionality. So, LLVM ORC subsystem is seen as

too heavy-weight and its functionality is excessive for embedded systems.

10

3 Discussion of the Previous Work

Previous work [6] presented a prototype of the library that showed the
viability of the idea of dynamic code generation for secondary processors of

heterogeneous system.

3.1 Inherited Decisions

The following decisions have shown themselves as reasonable and grounded
and thus are inherited from the previous work. They are discussed here to
provide better context.

Runtime changes in executable code on targets can be achieved by two
approaches: dynamic compilation which happens on the host and code inter-
pretation which happens on targets. Because modern interpreted languages
generally have higher requirements and cause more overhead, the first de-
cision is to use dynamic compilation on the more powerful host.

The second decision is to use embedded domain specific language (DSL)
as a basis for dynamic code generation. An alternative of using code at-
tributes with compiler extension (e.g. as used by OpenCL) is less viable due
to several reasons. First, code defined in a such way can be manipulated
at the runtime only as a string of characters. It complicates analysis and
dynamic code specialization, requiring additional step of semantic analysis
before that, whereas DSL approach gives semantic information ’for free’.
Second, it’s more demanding to maintain the compiler extension to keep it
up-to-date with the needed compiler versions. And it’s still necessary to use
dynamic compilation tools. It seems excessive to support both the compiler
extension and the dynamic compilation tools. Moreover, it would restrict
library users to only one compiler, which can be especially inconvenient in
the world of embedded systems.

LLVM [5] is used as a compilation backend. There is no real alternative,
and its excellent design and convenience of use made this work possible.

C++ is chosen as a language of implementation by several reasons:
firstly, it is a natural choice for embedded systems domain; secondly, it al-

lows to avoid overhead of interfacing with LLVM; and, most importantly,

11

with template metaprogramming it provides the necessary expressive power
for implementation of the DSL, which itself must be very expressive and

general to be applicable in a wide range of use cases.

3.2 Shortcomings

Current implementation has several shortcomings that complicate fur-

ther development of its ideas; the most notable problem is DSL design.
e No distinction is made between the stages of work with a DSL code:

— DSL code is tied up to the specific platform bit width already on

the stage of definition, which is clearly not necessary;

— the same module (Function) is used to represent both loaded
and unloaded code—a user must remember what functions are

already loaded or check it every time to avoid mistakes;

— DSL Function addresses (i.e. location in the target memory) must
be fixed prior to the compilation, although it can be handled fur-
ther at the code loading stage—it prevents a reuse of the already

compiled functions and thus brings extra compilation overhead.

e Ineffective and inconvenient translation to LLVM IR—instruments
provided by the LLVM framework (e.g. IRBuilder class) are ignored
and manual string concatenation is used instead. It is more error-
prone and difficult to extend. Moreover, generation of a correct IR

code is essential for the work of LLVM optimization passes.

e Code compilation for secondary processors currently doesn’t involve

any optimizations.

e Connection module has no separation between the handling of the
library command protocol (by which host and targets communicate)
and a specific communication protocol (e.g. TCP or 12C); this also
complicates system extensibility (i.e. to new communication proto-

cols).

12

This work revises previous architectural choices, redesigns and reimple-
ments the library and substantially extends it in terms of functionality and
possible applications. In particular, the new DSL is completely abstracted
from other parts of the library and can be reused independently in other
projects based on the idea of metaprogramming. Most importantly, the new

DSL implementation opens a possibility of dynamic optimizations.

13

||RMoc|u|e|< """ 1 CodeGen r """""

/N
oo <= -+ :
IRTranslator LLVM CodelLoader TargetConnection
: : N B
' DSL ! ! . Connection
v v ;

T <<Interface>> —I ResidentCode Jé---*:-- ExecutionMgr [~ - Connection <<Interface>>
Callable ' ConnimplBase

/\

[Locat |—{Vatue [{Residemtaiopat] |+~~~
—

Memory

~ 7 AV
|Literal| l)l Expr | | MemResident }>| MemoryManager | | LinuxConn | |Seriallmpl|

Figure 1: UML class diagram of the system. DSL class hierarchy is shown only approxi-
mately because of its breadth and templated, dynamic nature. IRTranslator together with
non-resident DSL constructs constitute independent and reusable DSL subsystem.

4 System Architecture

Further in the text by the host is meant primary processor, by the
target—one of the peripheral processors or microcontrollers, by the user—
developer who uses this library.

Fig. 1 shows the new architecture of the system.

DSL allows the user to describe the code which will be executed on the
targets. CodeGen module provides a simplified interface to LLVM compi-
lation and optimization facilities. CodeLoader, Execution and Connection
modules let the user load code on targets, communicate with them (for ex-
ample, using global variables) and control the code execution. Management
of the target’s for code and data loading memory is provided by the host
through MemoryManager module.

This architecture has a benefit of simple extensibility. Each of the fol-

lowing parts of the library can be extended independently from the others:

e DSL constructs and operations (for example, support array slicing or

exponentiation at the language level);

e communication protocols;

14

e target runtime functionality;
e most importantly, target platforms.

For details on these points, a reader can proceed to the following sections.

15

5 DSL

5.1 Design

The main part of this library is a powerful embedded C-like DSL. It is
translated to LLVM Intermediate Representation (IR) to allow code com-
pilation for a wide range of targets supported by LLVM. This design of the
DSL as translated and compiled at runtime is directly motivated by the
concept of generative (or multi-stage) programming when the abstraction
power of high-level languages is used to compose pieces of low-level code [3].
It makes runtime code generation and domain-specific optimization a fun-
damental part of the program logic.

As authors of [3] note, the usual appeal of DSLs is in increasing produc-
tivity by providing a higher level, more intuitive programming model for
domain experts, who are not necessarily expert programmers ("user-facing”
DSLs). The other direction, which is of direct interest for this work, is in
using DSL as a means for exposing knowledge about high level program
structures to a compiler.

This DSL implementation makes heavy use of powerful template metapro-
gramming capabilities of C++, up to C++-17 standard. The idea to leverage
C++ templates to cope with challenges that poses development of DSLs
aimed at generative programming goes back at least to the work of Czar-
necki et al. [1].

5.2 Description and Examples
DSL provides all necessary language constructs with a familiar syntax:
e basic types (possibly cv-qualified):

— arithmetic types;
— pointers;
— arrays of fixed length (possibly nested);

— structs (possibly nested);

16

e operations:

— arithmetic operators (with the support of pointer arithmetic);
— logical operators;
— bitwise operators;

— (C-like cast;
e control flow expressions:

— sequential (comma operator expression);
— conditional (if-else expression);

— while loop;
e functions (with a fixed number of arguments; no recursion);
e literal values.

It is also easily extensible with other higher-level constructs (for exam-
ple, Python-like array slicing) which will be translated directly to LLVM
IR (i.e. will be efficient).

To allow simpler organization of the language, every DSL construct
models either value or expression; there are no statements. For example,
to return void from a function user needs to use special DSL construct
"Unit’. Loops naturally return value from their last cycle. If loop didn’t run

it returns default-initialized value (generally, zero-initialized).

5.2.1 Types

Any DSL construct has a corresponding underlying C++ type, which
determines allowed operations on it and conversions to other types. Under-
lying C++ type can be accessed through member type alias : :type which
is present in every DSL type. And the DSL value type can be obtained (if
there is one) from C++ type using to_ds1<T> type trait. In other words,
there is a direct mapping between DSL types and C+-+ types. Type trait

to_dsl1<T> can be used as a convenient type factory.

17

Type of the DSL constructs (real C++ type, not the underlying C++

type) encodes how it was constructed and what child DSL constructs con-

stitute it (for example see listing 1).

© 00 N O O W N -

=
= O

Var<int> x, y, z;

auto expr = (x + y) * z;

using expr_type =
EBinOp< Instruction::FMul,
EBinOp< Instruction::Add,
Var<int>,
Var<int>
>

b

Var<int>

Listing 1: Type of some DSL expression

5.2.2 Generative Programming

One of the most interesting features of the DSL is a separation of DSL

abstract syntax tree (AST) construction from DSL function instantiation.

It is achieved through the use of C++14 generic lambdas which play a role

of DSL code generators (AST builders). Example can be seen on the next

listing 2.

1 |auto max_gen = [](auto x, auto y) {

2 return If(x > y, x, y);

313};

4 lauto dsl_max = make_dsl_fun<int, int>(max_gen);

Listing 2: Basic definition of a DSL generator and a DSL function

It allows simple and effective reuse of needed DSL constructs, as in the

next example on listing 3.

1
2
3
4

auto max3_gen = [&] (auto x1, auto x2, auto x3) {

return max_gen(xl, max_gen(x2, x3));
};

auto dsl_max3 = make_dsl_fun<int, int, int>(max3_gen);

Listing 3: Basic reuse of the previously defined DSL generator

18

This conceptually differs from simple function call as a means of code reuse
and is closer to function inlining. In this way the new DSL generator is
constructed which, in its turn, can be later reused. Moreover, on the stage
of DSL code generation user can utilize C+-+ constructs to build DSL code
(for examples see listings 4 and 5). So, although DSL provides only basic
programming constructs, a user of DSL is not restricted only to them and
can use expressive high-level C++ constructs to build a low-level DSL code.

It is essentially a realization of the idea of generative programming.

// mote: accepts arbitrary DSL expressions
auto reduce_sum_gen = [](auto ...xs) {

// Using C++17 fold ezpression

return (... + x8);

}s

~N O Ok W N

auto sum3 = make_dsl_fun<float, double, int>(reduce_sum_gen);

Listing 4: Use C++ code to build complex DSL expressions.

// mote: accepts arbitrary DSL expressions
// (e.g. other generators)
auto get_reducer = [](const auto& binary_op) {
return [&] (auto x1, auto... xs) {
// Using C++17 fold expression
return ((x1 = binary_op(xl, xs)), ...);
// Redundant assignments
// wtll be optimized out by LLVM

© 0 N O O & W N =

}s

[EEY
o

}s

=
N =

auto max_vararg_gen = get_reducer (max_gen) ;

13 |auto max3 = make_dsl_fun<int, int, int>(max_vararg_gen);

Listing 5: Generator of DSL reduce function over arbitrary DSL

expressions.

5.2.3 Comma Operator and Variables

Listing 6 shows two noticeable syntactic features of the DSL: the sequen-

tial operator that plays a role of C/C++ semicolon and DSL local variables.

19

Generally, any DSL variable which is not an argument of DSL generator
(enclosing lambda) will be considered a local one. For the more consistent
syntax user can define local variables inside the generator lambdas. Also
note that they can’t be defined inside the DSL expressions because they
follow the rules of C++ expressions. To use global variables a user is re-
quired to first load them on the target because they are translated to LLVM
IR as actual memory addresses.
Var<int> locall;
// mote lambda capture (can also be [&])
auto max_gen = [=](auto arg) {
Var<int> local2;
return (
// wariables can’t be defined here!
locall += arg,

locall += local2,

arg // last expression ts returned

© 00 N O O > W N -

[
o

)

[=Y
[=Y
-

.

Listing 6: Use of comma operator and local variables.

5.2.4 Generic Functions

Generic DSL functions is another very useful feature. As can be seen
from the previous examples, DSL generators are not bound to specific types
of parameters. Instead of explicit manual instantiation of DSL function
with required types of parameters library user can instantiate generic DSL
function with a help of function factory. If generic function is used with
arguments of inappropriate types, compiler will catch this and compilation
will fail with comprehensible error message.

Instantiated generic functions are stored in a function repository by a
key which represents their type. As a type of DSL constructs encodes their
AST, type of DSL functions encodes their body. Thus, the structural equiv-
alence between functions is achieved without any overhead. Thanks to this
repeated instantiation of the (structurally) same DSL functions is avoided.

DSL function is deleted from the repository at the end of translation to

20

LLVM IR. Needless to say, all this happens behind the scenes and a user
isn’t required to know about these details.

The following listing 7 shows an example of the use of a generic DSL

function.

1 |auto generic_max = make_generic_dsl_fun(max_gen);

2

3 |auto max4_gen = [&] (auto x1, auto x2, auto x3, auto x4) {
4 return generic_max(

5 generic_max (x1, x2),

6 Cast<float>(generic_max(x3, x4))

7)

8 |%;

9|// This will cause instantiation of 2 max functions:

10 | // for ints and for floats

11 |auto max4 = make_dsl_fun<float, float, int, int>(max4_gen);

Listing 7: Generic DSL function definition and use

5.2.5 Error Messages

Last, but not the least, DSL is designed with usability in mind. C++
code with a heavy use of templates is known for its complex error message
on compilation failure. In DSL all major type constraints are checked with
static_assert standard library function which produces comprehensible

compile time error messages.

5.3 Implementation Details
5.3.1 Generic Functions

Generic DSL function is implemented as a C++14 generic lambda with
a variable number of arguments. The function make_generic_dsl_fun is
a factory of these lambdas; it accepts DSL generator as its argument. The
lambda captures DSL generator by copy to avoid subtle problems with its
lifetime management. Otherwise user would be required to watch that DSL
generators are accessible during the calls to the corresponding generic DSL

functions.

21

On the call such lambda accesses the template function repository to
get the reference to the instantiation of the generic function for the specific
types of input arguments that were provided. This instantiation represents
a usual dsl: :Function. On this access either new instantiation is added to
the repository or the existing one is returned. If the generic DSL function
cannot be called with the provided arguments then the compilation will
fail at this moment. Then, when the instantiation of the generic function is
obtained, the expression representing a call to it (ECall) is returned.

Overall, from the user point, it is similar to the call to a C+-+ template
function with an automatic template argument type deduction from the

function input arguments.

5.3.2 Static Dispatch in Translation

Every DSL construct is translated differently. At the same time they
must provide uniform interface for translation (generally, a single translation

method toIR()). It can be achieved by one of the two ways:

e Dynamic dispatch through virtual translation method overloaded in

each DSL construct.
e Static dispatch through templated translation method.

Static dispatch has several advantages because it allows to avoid the

overhead of virtual function calls®:
e Extra indirection (pointer dereference) for each call to a virtual method.

e Virtual methods usually can’t be inlined, which may be a significant

cost hit for some small methods.

e Additional pointer per object. On 64-bit systems, this is 8 bytes per
object. For small objects that carry little data this may be a serious

overhead.

'https://waybackmachine.org/web/20171001124440/http://eli.thegreenplace.net:80/2013/
12/05/the-cost-of-dynamic-virtual-calls-vs-static-crtp-dispatch-in-c (Accessed: May 29,
2018)

22

https://waybackmachine.org/web/20171001124440/http://eli.thegreenplace.net:80/2013/12/05/the-cost-of-dynamic-virtual-calls-vs-static-crtp-dispatch-in-c
https://waybackmachine.org/web/20171001124440/http://eli.thegreenplace.net:80/2013/12/05/the-cost-of-dynamic-virtual-calls-vs-static-crtp-dispatch-in-c

The problem of translation may benefit from this even more, because it
involves a big number of small objects (DSL constructs). These efficiency
considerations can be especially important for embedded platforms.
Translation happens entirely in IRTranslator class, that maintains the
state of translation (e.g. stack frames and id-to-value mappings). All that
method toIR() in any DSL construct does is accepting IRTranslator by
reference and passing that DSL construct to method IRTranslator: :accept
for translation. Correct accept overload is chosen based on the type of ar-
gument (i.e. type of the DSL construct). As this function is the same for any
DSL construct, it is implemented as macro IR_TRANSLATABLE (see listing 8).

1 |#define IR_TRANSLATABLE \

2 |inline void toIR(IRTranslator &irt) const { \
3 irt.accept (*xthis); \
4

Listing 8: IR_TRANSLATABLE macro

5.3.3 Dependent Behavior of DSL Constructs

Each DSL expression represents description of a computation rather
than computation itself. For example, dereferencing a Ptr<T> produces not
a object of type T, but rather dereference expression EDeref<Ptr<T> > rep-
resenting dereference operation. At the same time it must behave in the
DSL computations exactly as an object of type T.

The problem is that T is an arbitrary type—it can be a simple arithmetic
value, as well as a complex expression involving function calls and pointer
arithmetic. This behavior is determined by a set of non-member (e.g. bi-
nary operators) and member functions (e.g. dereferencing, address-of and
assignment operators).

For non-member functions the problem takes a slightly different form:
although they are template functions, the set of correct template parameters
is constrained. It can be achieved with the SFINAE C++ idiom (Substitu-
tion Failure Is Not An Error) through the use of std::enable_if.

For member functions the problem is more interesting. Usual inheritance

(i.e. dynamic polymorphism) can’t be used here, because for the correct

23

] [Var<T>|
operator(] e
VarBase hi EArrayAccess ArrayBase—I
JAN AN JAN JAN
Var ResidentVar ResidentArray Array

Figure 2: UML class diagram showing special mechanism of inheritance that some DSL
constructs utilize.

Note template parameter Var<T> for ArrayBase—the array element type. Var<T> itself
depends on template parameter T—one of the basic arithmetic types. It determines what
behavior acquires EArrayAccess; that is, what it inherits from (as shown by the blue
arrow).

It’s also important to note that each of the classes in this hierarchy inherits from its own
base class (due to CRTP), and they’re shown in the same hierarchy only for presentation
purposes.

translation all types must be known at the compile time (as explained in
the section 5.3.2). The solution is, essentially, an elaborated form of the so-
called Curiously Recurring Template Patter (CRTP) C++ idiom. It involves
inheritance of expressions such as EDeref<Ptr<T>> from the type, that
specifies behavior for the type T and that is parameterized by the type of
this expression, thus preserving it. «The type, that specifies behavior for
the type T» can be T itself or one of its CRTP ancestors. It can also be
seen as an inheritance determined by a template type parameter. Exactly
this allows to achieve correct and effective handling of expressions of any

complexity (for example, as on the listing 9).

1 |auto complex_expr = [](Ptr<Var<uint32_t>> ptr) {
2 Var<uint32_t> tmp;

3 return tmp = *ptr &= ~(x++ptr ~ Lit(1 << 8));
4 |3;

Listing 9: DSL allows to construct complex expressions.

The reader can refer to the fig. 2 depicting as an example one simple
variant of inheritance of this kind for DSL constructs Array (with element
type Var<T>) and EArrayAccess. Listing 10 in the Appendix shows how

this kind of inheritance can be implemented in the code.

24

6 Subsystems description

6.1 MemoryManager

Conceptually MemoryManager is a part of a CodeLoader and used only
for data and code loading. That is, it’s important to note that target code
can’t dynamically allocate memory on targets. The centralized memory
management organization allows to free less powerful targets from extra
tasks and avoid extra communication cycles which would be inevitable to
ensure correct memory allocation if targets managed their memory them-
selves. Best-fit, worst-fit and first-fit memory management algorithms are

implemented.

6.2 CodelLoader

With the help of CodeLoader module user can load DSL global variables
and compiled code on targets. CodeLoader also allows getting a handle to
already loaded variables and functions. In this case, no checks or memory
allocation is performed, because, in general, there is no possibility to ensure
correctness of user’s actions. For example, functions can be loaded on a
target in a persistent memory in one program run, and on another program
run any knowledge about it will be lost, whereas the user may want to

access previously loaded data and functions.

6.3 Connection Module: Host

Connection module consists of two parts: command protocol for com-
munication between host and targets and underlying connection implemen-
tation. The functionality of the former is fully built on the primitives of the
latter, which must provide synchronous read and write operations.

The core command protocol includes the following commands:
e read specified number of bytes at a specified address;

e write data to a specified address;

25

e call function at the specified address;
e set function at the specified address on execution by the timer;

This abstraction from specific implementation allows easier extensibility
on new connection protocols. This work implements connection through
TCP and through USB (used as a virtual serial port).

6.4 Connection Module: Target Runtime

Each specific target platform requires its own firmware to interface with
the host. It must provide functionality for communicating with the host and
answering to requests according to the command protocol.

At this point an important consideration arises: targets must provide
API sufficient for a wide range of tasks. Generally, peripheral devices on
microcontrollers are memory mapped, which means that runtime API con-
sisting of memory read and write functions can be sufficient. For example,
the family of STM32 microcontrollers has fixed memory map and each de-
vice has a specific predefined address in memory.

Some platforms may need an extended API. When the target has an op-
erating system, in particular Linux, it can additionally provide an interface
to some of the system calls: open() for using devices represented as in-
put/output ports and mmap () for correct work with library runtime process
address space. It is implemented in the LinuxConnection module. Although
for this platform it is also possible to implement an interface to arbitrary
system calls and libraries using dlopen() and dlsym() functionality, the
library runtime API for Linux is intentionally left minimal but sufficient
for tasks concerned with controlling peripheral devices.

Another important question is a debugging interface. Issuing diagnostic
messages to some local to target buffer can accommodate most of the needs
and at the same time is easily implementable. Target must provide interface
to read the buffer and to get an address of the target local logging func-
tion. This address is used to construct the DSL wrapper for remote logging

function. From this point it can be further used in the DSL code.

26

7 Approbation

The system was tested on several setups:

e Linux on x86 plays the role of both host and target machines, com-
munication is through TCP connection (setup for tests during devel-

opment);

e the host is Linux x86, the target is Odroid XU4 (armv7a) with Linux,

TCP connection;

e the host is Linux x86, the target is bare-bones stm32f429i-discovery

microcontroller (armv7em), USB Virtual COM Port connection;

e the host is Odroid XU4 (armv7a) with Linux, the target is bare-
bones stm32f429i-discovery (armv7em), connection through USB Vir-
tual COM Port.

Tests were performed for each command from the command protocol
(see above in the section 6.3). They can be reproduced with a suitable
peripheral processor and a suitable runtime running on it. The runtime
for targets with a UNIX-like operating system can be found in the project
repository? (local_loader target in CMake build system). The runtime for
stm32f429i-discovery microcontroller can be found in a separate repository?.

Tests are implemented with Google Test framework®.

https://github.com/gkirgizov/hetarch
Shttps://github.com/gkirgizov/hetarch_stm32f4
“https://github.com/google/googletest

27

https://github.com/gkirgizov/hetarch
https://github.com/gkirgizov/hetarch_stm32f4
https://github.com/google/googletest

8 Demonstration

For a demonstration of dynamic optimization possibilities, which this
library opens, a reader can refer to the listings of PID control (list. 11) and
its tuning for specific conditions of the deployment environment (list. 12)
in the Appendix.

The work is organized in the following way:

in the first phase host loads general version of the PID controller with

tuning code on the target;

e in the second phase tuning code is called and data produced by it is

read by host;

e in the third phase host computes coefficients based on tuning data

and recompiles PID controller with them:;
e finally, host loads PID controller optimized for specific coefficients.

This example shows two advantages of using the library. Firstly, tuning
code is completely absent from the final program running on the target.
Dynamic code generation allows compiling code for specific constant coef-
ficients to achieve better execution times and smaller program size.

Secondly, the dynamically generated code can be more optimal due to
optimizations performed by LLVM. When coefficients are integer values,
or, even better, integer powers of two (or float values, that can be rounded
without big errors), resulting code will be generated with fewer (or com-
pletely without) expensive floating operations.

To emphasize possible dynamic optimizations, fig. 3 presents a compar-

ison between listings of the PID controller code for two cases:
e C code from listing 13 compiled with clang without this library;
e DSL code from listing 11 dynamically optimized with this library.

There’re several things on fig. 3 to note:

28

W ~NO O WN -

; Kp * perr 1

%9 = load float, float* @Kp 2

%10 = sitofp i32 Yperr to float 3||; Kp * perr

%11 = fmul float %9, %10 41 %12 = shl i32 Y%perr, 2
5[%13 = sitofp i32 %12 to float

; Kd * derr / dt 6

%12 = load float, float* GQKd 71 ; Kd * derr / dt

%13 = sitofp i32 Yderr to float 8| %14 = sitofp i32 Y%derr to float

%14 = fmul float %12, %13 9| %15 = fmul float %14, 5.000000e—01

%15 = fdiv float %14, %dt 10 || %16 = fdiv float %15, 1.000000e—01
11

%16 = fadd float %11, %15 12 || %17 = fadd float %16, %13
13

; Ki * derr * dt 14

%17 = load float, float* @Ki 15| ; Ki * derr * dt

%18 = sitofp 132 Yierr to float 16 || %18 = mul i32 Y%ierr, 6

%19 = fmul float %17, %18 17 || %19 = sitofp i32 %18 to float

%20 = fmul float %19, %dt 18 || %20 = fmul float %19, 1.000000e-—01
19

%21 = fadd float %16, %20 20 || %21 = fadd float %20, %17

Figure 3: Comparison of LLVM IR generated for expression > Kp * perr + (Kd * derr
/ dt) + (Ki * ierr * dt)’’ (core part of the PID controller code; other lines are omit-
ted here). Compiler options used: -02 -target x86_64-pc-linux-gnu. LLVM IR is used
instead of native assembler because it is more readable.
Left: compiled with clang from C code on list. 13. LLVM IR is showed for the last line.
Right: compiled with LLVM from DSL (see list. 11). For the sake of demonstration it is as-
sumed that dynamically determined PID controller coefficients are Kp=4, Kd=6, Ki=0.5;
and control cycle duration is dt=0.1.

e Dynamically generated code has fewer memory accesses because it is

compiled for specific values (note lines 2, 7, 15 where usual code loads

coefficients stored as global variables).

e Instead of floating-point multiplications (lines 4 and 17 on the left)

integer shift (line 4, right) and integer multiplication (line 16, right)

are used.

e One apparent to a programmer optimization on line 9, right is missed:

substitute multiplication by 0.5 with integer division by 2 or right shift

by one; and it should be’, although it is possible to implement such

optimizations on the DSL level.

>This compiler behavior is expected according to C11 standard (section F9.2.1), because representations
of 0.5 and 2 maybe not be equivalent and the result can be different on some machines.

29

9 Discussion

9.1 Library Applicability

The library is intended for use with embedded heterogeneous systems
of a small scale with low-power secondary processors and microcontrollers
that run heterogeneous tasks. The case of homogeneous tasks on the more
powerful systems is better accommodated with existing tools (e.g. OpenCL
or Delite) that are specifically aimed at scheduling and parallelizing the
computations across bigger number of secondary processors. This library
isn’t intended for such use cases and doesn’t provide any orchestration for
parallel tasks. Each secondary processor should be managed manually and
separately.

Generally, the benefits and applicability of the library should be con-
sidered in each particular case. As noted in the introduction, the library is
well suited for the problems when the dynamic configuration of the system
is required (either for particular environment conditions or for different pe-
ripheral devices and sensors). It’s also important to consider the price of
dynamic recompilation: the benefits of the specialized and optimized code

should amortize the compilation price.

9.2 Limitations

The library has some limitations.

It doesn’t provide facilities for loading on the targets existing compiled
code (e.g. other programming libraries). To be applicable to a wider range
of use cases it requires support of this functionality.

DSL can also be extended with additional language constructs, for ex-
ample, switch, goto or to support recursion. Support for a debugging in

terms of the DSL (breakpoints, tracing) can also be a useful feature.

30

Conclusion

All tasks have been successfully accomplished:

Survey with relevant works is presented.

Previous system implementation is thoroughly analyzed and its prob-

lems are discussed.

System is redesigned:

— DSL subsystem is abstracted from other parts of the system:;

— additional abstractions are introduced to make the system more

extensible and maintainable.

Implemented according to the new architecture:

— DSL subsystem;

— embedded architectures programming library.

System is tested on several platforms.

Source code with build instructions can be found in the project reposi-

tory6 .

Shttps://github.com/gkirgizov/hetarch

31

https://github.com/gkirgizov/hetarch

Appendix

1 |[template< typename T, typename TChild >

2 |struct get_base {

3 using type = typename T::template base_t<TChild>;
4|};

5 |template< typename T, typename TChild >

6 |lusing get_base_t = typename get_base<T, TChild>::type;
7

8 |// EArrayAdccess must behave exzactly as an array element
9 |template< typename TArray, typename TIndex >

10 |class EArrayAccess

11 // get the type providing behavior for array element
12 // and parametrize it by EArraydccess (CRTP <diom)
13 public get_base_t<

14 typename TArray::dsl_element_t,

15 EArrayAccess<TArray, TIndex>

16 >

7\ L/ ... %/}

18

19 | // ArrayBase type provides array—like behavior

20 |// e.g. operator[] (that returns EArraydccess)

21 |template< typename TArray, typename TElem, std::size_t N >
22 |class ArrayBase {

23 |public:

24 using dsl_element_t = TElem;

25 template<typename TChild>

26 using base_t = ArrayBase<TChild, TElem, N>;

27 //

28 |}

29

30 |// VarBase type provides behavior of basic arithmetic types
31 |template< typename TVar, typename T >

32 |class VarBase {

33 template<typename TChild>

34 using base_t = VarBase<TChild, T>

35 //

36 |}

Listing 10: Example of providing behavior of array element (e.g.

VarBase<T>) for EArrayAccess.

32

© 00 N O O b W N =

W W W W W W W W W N DNDNDNDNDDNDDNDDNDDNDDNDDNRLRRPRRFPB P B B B B B 2
0O N O O b W NP, O O 0N O O WN P, O O 0N O O i W N - O

using namespace hetarch;

using namespace hetarch::dsl;

typedef int32_t ctrl_t; // for control wariables
typedef float coef_t; // for coefficients

// Example of the target
typedef uint32_t addr_t; // size_ t of the target
conn::SerialConnImpl<addr_t> conn{’’/dev/ttyACMO”’};

SimplePipeline<addr_t> pipeline{”’armv7e_linux_eabihf’’, conn};

// Global war—s to store error data between control cycles
auto perr = pipeline.load(Global{ Var<ctrl_t>{0} 3});
pipeline.load(Global{ Var<ctrl_t>{0} 1});

auto ierr

// dt — control cycle durations (in seconds), sp — setpoint
auto pid_gen = [&] (auto Kp,auto Ki,auto Kd,auto dt,auto sp) {
auto pid_ctrl = [&]{
// Local wariables:
// pv — process wvariable, cv — control wvartable

Var<ctrl_t> pv, cv, prev_perr, derr;

// read_pv and write_cv are some dsl generators
// that perform actual input/output
return (

pv = read_pv(),

prev_perr = perr,
perr = sp — pv,

ierr += perr,

derr = perr — prev_perr,

cv = Kp*perr + Kdxderr/dt + Kixierrx*dt;

write_cv(cv)
)
+s
return pid_ctrl;

+;

Listing 11: PID controller DSL code.

33

© 00 N O O b W N =

W W W W W W W W N NDNDDNDNDNDDNDDNDDNDDNDMDNDDNDNDEFE R PR B B B B B B 2
N O o W NN, O O 00 NOO P WNEE O O 00N Ok WM O

auto tuner = [&] (auto dt, auto sp){

// For tuning coefficients are usual mutable DSL wvariables

Var<coef_t> Kp{0}, Ki{0}, Kd{0};
auto pid_ctrl = pid_gen(Kp, Ki, Kd, dt, sp);

// Specific tuning method:

// determines current operating conditions

// (e.g. by reading some sensors)

// and returns tuning data that allows to compute

// optimal PID controller coefficients.

// E.qg. for Ziegler—Nichols method it s

// Ku — 7ultimate gain” and Tu — oscillation period

return (/* actual tuning code goes here */);

}s

// Example parameters

Lit sp{42}; // Setpoint

int ms_delay{100}; // Control cycle duration
Lit dt{ms_delay / 1000.0};

auto tuning_code = make_dsl_fun(tuner, dt, sp);
// Translate, compile and load tuning code

auto tuning_fun = pipeline.load(tuning_code);

// Run tuning code and get tuning data
auto tuning_data = exec.call(tuning_fun, dt, sp);
// Compute coefficients using optimal tuning data

auto [Kp, Ki, Kd] = compute_coefs(tuning_data);

// Generate optimal PID controller

auto opt_pid_gen = pid_gen(Kp, Ki, Kd, dt, sp);

auto opt_pid_code = make_dsl_fun(opt_pid_gen);

// Translate, compile and load optimal PID controller

auto opt_pid = pipeline.load(opt_pid_dsl);

// Finally, run PID controller on timer

pipeline.schedule (opt_pid.callAddr, ms_delay);

Listing 12: PID tuning DSL code.

34

© 00 N O O W N -

L e e
s W NN = O

typedef int ctrl_t;
typedef float coef_t;
extern coef_t Kp, Kd, Ki;
ctrl_t perr = 0, ierr = 0;
ctrl_t pid_ctrl(float dt, ctrl_t sp, ctrl_t pv) {
ctrl_t prev_perr = perr;
perr = sp — pV;
ierr += perr;
ctrl_t derr = perr — prev_perr;
return Kp*perr+(Kd*derr/dt)+(Kixierrx*dt) ;
+

Listing 13: PID controller C code used for LLVM IR comparison.

35

References

[

2|

3]

4]

5]

6]

17l

18]

DSL Implementation in MetaOCaml, Template Haskell, and
C++ / Krzysztof Czarnecki, John T. O’Donnell, Jorg Striegnitz,
Walid Taha // Domain-Specific Program Generation. — 2003.

Delite: A compiler architecture for performance-oriented embedded
domain-specific languages / Arvind K Sujeeth, Kevin J Brown, Hy-
oukjoong Lee et al. // ACM Transactions on Embedded Computing
Systems (TECS). —2014. — Vol. 13, no. 4s. — P. 134.

Go meta! A case for generative programming and DSLs in performance
critical systems / Tiark Rompf, Kevin J Brown, HyoukJoong Lee
et al. // LIPIcs-Leibniz International Proceedings in Informatics /
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. — Vol. 32. — 2015.

Hames Lang. ORC — LLVM’s Next Generation of JIT API. —2016. —
Access mode: http://11lvm.org/devmtg/2016-11/#talkl (online; ac-
cessed: 17-12-2017).

Lattner Chris, Adve Vikram. LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation // Proceedings of the

2004 International Symposium on Code Generation and Optimization
(CGO’04). — Palo Alto, California, 2004. — Mar.

Melentev Kirill, Belkov Roman, Kirilenko Iakov. Sistema program-
mirovaniya kiberneticheskih geterogennyh arhitektur s ispolzovaniem
LLVM // Second Conference on Software Engineering and Information
Management (SEIM-2017)(short papers). —2017. —P. 31.

Parallel computing experiences with CUDA / Michael Garland,
Scott Le Grand, John Nickolls et al. // IEEE micro. — 2008. — Vol. 28,

no. 4.

Rompf Tiark, Odersky Martin. Lightweight modular staging: a prag-
matic approach to runtime code generation and compiled DSLs //
Communications of the ACM. —2012. — Vol. 55, no. 6. —P. 121-130.

36

http://llvm.org/devmtg/2016-11/#talk1

19]

[10]

[11]

White paper: Multicore software development kit : Rep. : SPRY168A /
Texas Instruments Incorporated ; Executor: Raghu Nambiath San-
jay Bhal, Raj Sivarajan : 2011. — May. — Access mode: http://www.
ti.com/lit/wp/spryl68a/spryl68a.pdf.

Stone John E, Gohara David, Shi Guochun. OpenCL: A parallel pro-
gramming standard for heterogeneous computing systems // Comput-

ing in science & engineering. — 2010. — Vol. 12, no. 3. — P. 66-73.

A heterogeneous parallel framework for domain-specific languages /
Kevin J Brown, Arvind K Sujeeth, Hyouk Joong Lee et al. // Parallel
Architectures and Compilation Techniques (PACT), 2011 International
Conference on / IEEE. —2011. — P. 89-100.

37

http://www.ti.com/lit/wp/spry168a/spry168a.pdf
http://www.ti.com/lit/wp/spry168a/spry168a.pdf

	Introduction
	Problem Statement
	Similar Work
	OpenCL & CUDA
	Texas Instruments MultiCore SDK
	Delite
	LLVM ORC

	Discussion of the Previous Work
	Inherited Decisions
	Shortcomings

	System Architecture
	DSL
	Design
	Description and Examples
	Types
	Generative Programming
	Comma Operator and Variables
	Generic Functions
	Error Messages

	Implementation Details
	Generic Functions
	Static Dispatch in Translation
	Dependent Behavior of DSL Constructs

	Subsystems description
	MemoryManager
	CodeLoader
	Connection Module: Host
	Connection Module: Target Runtime

	Approbation
	Demonstration
	Discussion
	Library Applicability
	Limitations

	Conclusion
	Appendix
	References

