Алгоритм автоматической подстройки параметров управления исполнительными механизмами для автопилота БПЛА самолетного типа различных размеров и схем с дополнительным бортовым микрокомпьютером

Выступающий: Валерия Назаренко Руководитель: проф., д.ф.-м.н. А.Н. Терехов Рецензент: к.ф.-м.н. К.С. Амелин

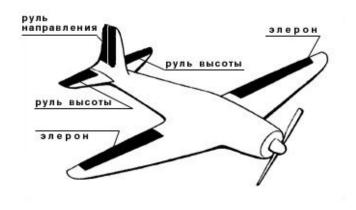
Санкт-Петербургский государственный университет

Введение

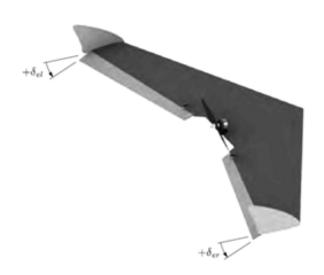
- БПЛА различны по архитектуре и размерам
- Автопилот устройство или программно-аппаратный комплекс для автоматического управления летательным аппаратом
- Оптимизация работы автопилота с исполнительными механизмами для увеличения запаса энергии полета

Постановка цели

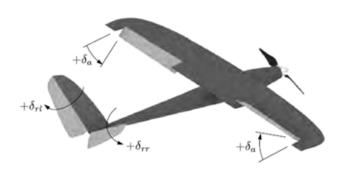
Цель работы – разработка алгоритма автоподстройки автопилота беспилотного летательного аппарата.


Постановка задач

- Изучить существующие методы автоматической подстройки
- Изучить кинематику и динамику движения самолета
- Разработать алгоритм автоматической подстройки параметров управления
- Вычислить максимальные и оптимальные значения управляющих сигналов
- Провести ряд тестов на различных данных


Что существует?

- Ориентировочный сценарий реализации бортового алгоритма
- ПИД закон для стабилизации и управления БПЛА


Управляющие поверхности БПЛА

Тип "летающиее крыло"

БПЛА с V-образным хвостовым оперением

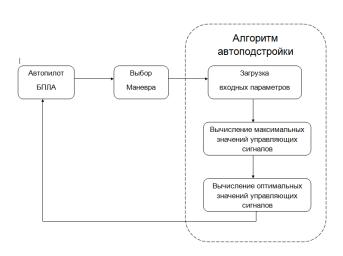
Схема работы автопилота

Зона взлета

 ✓ Выставление тангажа на фиксированное значение Θ

• Зона набора высоты

 Регулировка воздушной скорости по углу тангажа


• Зона удержания высоты

- ✓ Регулировка высоты по углу тангажа
- Регулировка воздушной скорости по открываю заслонки

• Зона снижения

 Регулировка воздушной скорости по углу тангажа

Структура взаимодействия

Алгоритм автоподстройки: поиск экстремумов

- ✓ Нахождение максимальных значений сигналов при взлете
- ✓ Нахождение максимальных значений сигналов при заданных углах поворота
- Нахождение минимальных значений сигналов при большой круговой траектории полета

Алгоритм автоподстройки: поиск оптимальных решений

- ✓ Нахождение оптимального угла подъема при взлете
- ✓ Нахождение оптимального значения сигналов для маневра "поворот" и необходимого радиуса
- Нахождение сбалансированных переменных при удержании высоты

Тестирование алгоритма

Входные параметры тестирования

Параметр	Значение	Продольный коэфф.	Значение	Боковой коэфф.	Значение
m	13,5 кг	C_{L_0}	0,8	C_{Y_0}	0
J_x	0,8244 кг-м ²	C D.	0,03	$C_{I_{\bullet}}$	0
J y	1,135 кг-м ²	C m ₀	-0,02338	C	0
J _z	1,759 кг-м ²	$C_{L_{\bullet}}$	3,45	$C_{Y_{\mathfrak{p}}}$	-0,98
J_{xz}	0,1204 кг-м ²	C D.	0,30	$C_{I_{\mathfrak{p}}}$	-0,12
S	0,55 м ²	C m.,	-0,38	C ,,	0,25
b	2,8956 м	$C_{L_{\bullet}}$	0	$C_{Y_{\bullet}}$	0
c	0,18994 м	C D.	0	$C_{I_{\bullet}}$	-0,26
S _{Проп.}	0.2027 м ²	C _{m_q}	-3,6	C ,,	0,022
p	1,2682 кг/м ³	$C_{L_{a_r}}$	-0,36	C_{Y_*}	0
k _{Двиг.}	80	C Dec	0	C_{I_r}	0,14
k _T	0	C ma.	-0,5	C n,	-0,35
k_{Ω}	0	СПроп.	1,0	$C_{Y_{k_{\alpha}}}$	0
e	0,9	M	50	C1.	0,08
		αο	0,4712	C "	0,06
		ε	0,1592	$C_{Y_{\mathbf{a}_{\mathbf{c}}}}$	-0,17
		C D,	0,0437	$C_{l_{s_r}}$	0,105
		C ma,	-0,032		

Тестирование

- Модель Aerosonde
 - ✓ Тест маневра "взлет"
 - ✓ Тест маневра "поворот"
- Модель Zagi
 - ✓ Тест маневра "взлет"
 - ✓ Тест маневра "поворот"

Результаты работы

- Изучены существующие методы подстройки, динамика движения полета БПЛА и работа автопилота продольного и бокового движения
- Разработан алгоритм подстройки автопилота с использованием входных физических параметров и коэффициентов движения БПЛА

Результаты работы

- Получены максимальные и оптимальные значения управляющих сигналов для различных типов беспилотных летательных аппаратов
- Проведены тесты на имитационной моделе в среде Simulink по параметрам самолетов "Aerosonde"и "Zagi"

Спасибо за внимание!