Влияние селективности на исполнение запросов в структурах многомерного индексирования

Федотовский Павел Валерьевич, гр. 545

Санкт-Петербургский государственный университет Математико-механический факультет Кафедра системного программирования

Научный руководитель: ассистент кафедры информатики, Чернышев Г.А.

Санкт-Петербург 2014 г.

Введение

- Индексирование
 - B^+ -дерево
- Многомерное индексирование
 - Геоинформационные системы, мультимедиа СУБД, ...
 - Запросы на диапазон
- Селективность запроса q: $\frac{m}{n}$, где n общее количество записей, m записей удовлетворяют запросу
- Транзакционные системы
 - In-memory

Мотивация

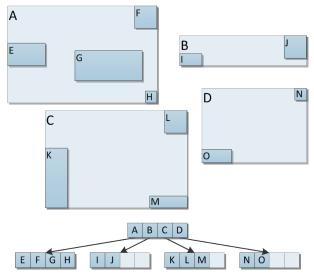
- Выбор оптимальной структуры данных
 - Селективность
 - Размерность данных
 - Распределение данных
 - Выборка первых к записей
- Применение: оптимизация производительности
 - Автоматическая настройка БД

Постановка задачи

- Провести обзор существующих алгоритмов для многомерного индексирования
- Реализовать тестовую систему для проведения измерений на существующем прототипе многомерного индекса
- Исследовать влияние селективности на производительность различных подходов к многомерному индексированию при различных сценариях

Обзор алгоритмов

- Сведение к одномерному случаю
- Иерархические структуры:
 - B^+ -дерево
 - R-дерево
 - Х-дерево
 - К-D-дерево
 - ...
- Структуры, основанные на хэшировании
 - LSH (Locality-Sensitive Hashing)
 - GRID-файл
 - ...


B^+ -дерево

- Данные хранятся только в листьях (в отличие от В-дерева)
- Преимущества
 - Множество алгоритмов обеспечения корректности параллельного доступа
 - Данные хранятся в упорядоченном виде
- Недостатки
 - Низкая производительность исполнения запросов на диапазон в случае высокой селективности

R-дерево

- Обобщение B^+ -дерева на многомерный случай
 - Данные также хранятся только в листьях
 - Обе структуры сбалансированы
 - Вершины хранят ограничивающий прямоугольник, что можно считать обобщением интервалов в B^+ -дереве
- Реализовано в PostgreSQL, Oracle, MySQL, Informix, SQLite, . . .

R-дерево: пример

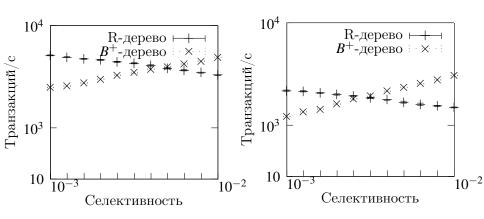
Исследование влияния селективности

- Выбор платформы
 - Elki, Amdb, ...
- Выбранный прототип многомерного индекса:
 - Разрабатывался на матмехе СПбГУ в рамках гранта РФФИ №12-07-31050
 - \bullet Реализация R-дерева, B^+ -дерева
 - In-memory индекс
 - Уровень изоляции транзакций read committed

Тестовая система

- Модуль для генерации начальных данных и запросов
 - Размер индекса
 - Размерность данных
 - Распределение данных
 - Селективность запросов
- Модуль для проведения измерений
 - Время заполнения индекса
 - Количество транзакций в секунду

Тестовый стенд


• Конфигурация 1:

- Аппаратное обеспечение: Intel Core i7-2630QM, 2.00 GHz, 6GB RAM
- Программное обеспечение: x86_64 GNU/Linux, ядро 3.11.0-12-generic.

• Конфигурация 2:

- Аппаратное обеспечение: Intel Core i7-3770, 3.40GHz, 8GB RAM
- Программное обеспечение: x86_64 GNU/Linux, ядро 3.8.0-26-generic.

Измерения

Равномерное распределение, размерность 2

Равномерное распределение, размерность 4

Анализ

$$P = a * S^b$$

Распределение

Закон Ципфа

- Р пропускная способность
- \bullet a и b параметры
- \bullet S селективность запроса

_ ' '				
Равномерное	0.60 ± 0.03	0.80 ± 0.03	0.85 ± 0.02	0.87 ± 0.02
Нормальное	0.80 ± 0.06	0.89 ± 0.03	0.94 ± 0.03	0.94 ± 0.02
Закон Ципфа	0.57 ± 0.03	0.79 ± 0.02	0.85 ± 0.02	0.87 ± 0.02
Распределение	2	4	6	8
Равномерное	0.62 ± 0.02	0.79 ± 0.03	0.86 ± 0.03	0.88 ± 0.01
Нормальное	0.81 ± 0.06	0.92 ± 0.04	0.99 ± 0.04	1.00 ± 0.03

 0.79 ± 0.02

Значения параметра b для B^+ -дерева

 0.86 ± 0.03

 0.57 ± 0.04

6

 0.86 ± 0.02

Результаты

- Проведен обзор существующих алгоритмов для многомерного индексирования
- Реализована тестовая система для проведения измерений на существующем прототипе многомерного индекса
- Исследовано влияние селективности на производительность B^+ -дерева, R-дерева
- По теме работы была опубликована статья на конференции SYRCoDIS'13