Collaboration with Spiridon Bakiras (Dept. of Mathematics and Com-
puter Science, John Jay College, CUNY) and Panos Kalnis (Dept. of Com-
puter Science, National University of Singapore).

Abstract

Multiple target tracking (MTT) is a well-studied technique in the
field of radar technology, which associates anonymized measurements
with the appropriate object trajectories. This technique, however, suf-
fers from a combinatorial explosion, since each new measurement may
potentially be associated with any of the existing tracks; consequently,
the complexity of existing M'T'T algorithms grows exponentially with the
number of objects, rendering them inapplicable to large databases. In
this paper, we investigate the feasibility of applying the M'TT framework
in the context of large trajectory databases. Given a history of object
movements, where the corresponding object ids have been removed, our
goal is to track the trajectory of every object in the database in suc-
cessive timestamps. Our main contribution lies in the transition from
an exponential solution to a polynomial one. To this end, we introduce
a novel method that transforms the tracking problem into a min-cost
max-flow problem. We then utilize standard techniques that work in
polynomial time with respect to the number of objects. Our experi-
mental results indicate that the proposed methods produce high quality
results that are comparable with the state-of-the-art MTT algorithms.
In addition, our methods reduce significantly the computational cost
and, thus, scale well to a large object population.

1 Introduction

Recent advances in wireless communications and positioning devices have
generated an enormous interest in the collection of spatio-temporal (i.e., tra-
jectory) data from moving objects. Any GPS-enabled mobile device with
sufficient storage and computational capabilities can benefit from a wide va-
riety of spatio-temporal applications. This type of applications maintain (at
a centralized server) the locations of a large number of moving objects over
a long period of time. As an example, consider a traffic monitoring system
where each car periodically transmits its exact location to a database server.
The resulting trajectories can be queried by a user to retrieve important in-
formation regarding current or predicted traffic conditions at various parts
of the underlying road network.

Nevertheless, the availability of such data at a centralized location raises
some concerns regarding the privacy of the mobile clients, especially if the
data is distributed to other parties. A simple solution that partially solves
this problem is to anonymize the trajectory data'. In the traffic monitoring
system, for instance, the ids of the individual users are not essential for mea-
suring the traffic level on a road segment. Therefore, the mobile users may
not be willing to identify themselves, and may choose to transmit anonymized
location information.

However, detailed trajectory data (i.e., coupled with object identifiers)
can be very valuable in numerous situations. For example, a law enforce-
ment agency trying to track a suspect that was seen in an automobile at a
specific time instant, can certainly benefit from stored trajectory informa-
tion. In this scenario, anonymization severely hinders the tracking process,
since there is no information to link successive measurements to the same tra-
jectory. A straightforward solution, given the similarity of the two problems,
is to leverage existing methods that are used in radar tracking applications.
Multiple target tracking (MTT) [BSF88, Blag&6] is a well-studied technique
in the field of radar technology, which associates anonymized measurements
with the appropriate object trajectories. This technique, however, suffers
from a combinatorial explosion, since each new measurement may poten-
tially be associated with any of the existing tracks. The reason for that,
is that every possible combination of measurements must be considered, in
order to minimize the overall error across all trajectories. Consequently, the
complexity of existing MTT algorithms grows exponentially with the number
of objects, rendering them inapplicable to large databases.

In this paper, we investigate the feasibility of applying the MTT frame-
work in the context of large trajectory databases. Given a history of object
movements, where the corresponding object ids have been removed, our goal
is to track the trajectory of every object in the database in successive times-
tamps. Our main contribution lies in the transition from an exponential
solution to a polynomial one. To this end, we introduce a novel method that
transforms the tracking problem into a min-cost max-flow problem. We then
utilize standard techniques that work in polynomial time with respect to
the number of objects. Our experimental results indicate that the proposed
methods produce high quality results that are comparable with the state-of-

INotice that assigning a random id to each object is not sufficient, since a user may be
linked to a specific trajectory using some external information.

the-art MTT algorithms. In addition, our methods reduce significantly the
computational cost and, thus, scale well to a large object population.

The remainder of the paper is organized as follows. Section 2 presents
a formal definition of our problem, while Section 3 surveys the related work
in this area. A detailed description and analysis of our algorithm is given
in Section 4. In Section 5 we evaluate experimentally our methods, while in
Section 6 we summarize our results and present some directions for future
work.

2 Problem Formulation

Let H = {S1,52,...,Su} be a long, timestamped history. A snapshot S; of
H is a set of locations (measurements) at time ¢;. We do not consider syn-
chronized measurements, i.e., the time difference between consecutive times-
tamps (ti+1 —ti) is not constant. Each snapshot contains measurements from
exactly N objects, i.e., we assume that (1) an existing object may not disap-
pear and new objects may not appear during the interval [t;,)] and (2) the
measurements are complete (there are no missing values). These assumptions
may not hold in some cases, but our goal in this paper is to solve a relatively
simple version of the problem. We plan to relax these constraints as part
of our future work. Finally, we assume that the locations are anonymized,
meaning that there is no object id that matches a certain location; any lo-
cation measurement may correspond to any of the N objects.

Given N objects, and a history H spanning M timestamps, an MTT
query returns a set of N trajectories, where each trajectory i has the form
{(ziy, Yirs t1), (Tin, Yins t2)s -y (Tin,, Yirs> tar) - Each triple in the above set
corresponds to the location of the object at each of the M timestamps. To
illustrate the significance of this result, consider the following scenario: A
suspect was seen driving in the vicinity of his home address at time ¢;. What
a data analyst may want to do, is issue a range query and retrieve a set of
points (i.e., measurements) that may be associated with the suspect. Each of
these points will be linked to a different trajectory, and thus identify possible
locations of the suspect at subsequent timestamps.

Figure 1 shows an example MTT query with M = N = 3. Each line
connecting two measurements in successive timestamps, indicates that the
two measurements belong to the same trajectory. The three trajectories are
disjoint and are formed in a way, such that the overall error is minimized (the

details of the error function are discussed in Section 4). Given the illustrated
associations in Figure 1, the topmost trajectory is represented as {(x1,y1,t1),

(3747 Y4, t2), (.737, Y7, t3>}

7 d g
(xlayl) __gﬂ‘/——g (x7,y7)

o) L —
(>2,2) (x5,)5) (x3.y8)
O O O

(x3ay3)
(x67y6)
\\O\ (x9ay9)

— 1T—=O0

S Sh S3

Figure 1: Example multiple target tracking

3 Related Work

Multiple target tracking has been studied extensively for several decades, and
a wide variety of algorithms have been proposed that offer different levels of
complexity and tracking quality. In general, these methods can be classified
into three major categories: nearest neighbor (NN), joint probabilistic data
association, (JPDA), and multiple hypotheses tracking (MHT).

NN techniques [Bla86] work in a single scan of the dataset; for every set
of measurements (i.e., from one timestamp), each sample is associated with a
single track. The objective is to minimize the sum of all distances, where the
distance is defined as a function of the difference between the measured and
predicted values. Among existing NN algorithms, the global nearest neighbor

D

(GNN) approach is the best solution. JPDA algorithms [BSF88] also work
in a single scan, and for every pair of measurement-track, the probability
of their association is calculated as the sum of the probabilities of all joint
events. An experimental evaluation of several NN and JPDA algorithms
can be found in Ref. [LHB99]. Even though some of these methods run in
polynomial time (due to their greedy nature that minimizes the error at each
timestamp independently), their tracking quality is not very good, leading
to many false associations.

Reid’s algorithm [Rei79] is probably the most representative method us-
ing multiple hypotheses. Instead of associating each measurement with a sin-
gle track, multiple hypotheses are maintained, whose joint probabilities are
calculated recursively when new measurements are received. Consequently,
each measurement is associated with its source based on both previous and
subsequent data (multiple scans). While this process continues, unfeasible
hypotheses are eliminated and similar ones are combined. Reid’s algorithm
produces high-quality results, but its computational and space complexity
grows exponentially with the number of measurements.

To further reduce the complexity of the tracking process, clustering has
also been considered as a viable solution. Ref. [CKPBS01, KNS04] group the
set. of measurements before forming the candidate tree, in order to remove
unlikely associations. In this way, the problem is partitioned into smaller
sub-problems that are solved more efficiently.

Another interesting application of multiple target tracking is investigated
in Ref. [KMCJO05], where the objective is to discover associations among
asteroid observations that correspond to the same asteroid. The authors
introduce an efficient tree-based algorithm, which utilizes a pruning method-
ology that reduces significantly the search space. However, their problem
settings are different from ours, since (1) they assume that there is a given
motion model that has to be obeyed, and (2) they are interested in returning
all sets of observations that conform to that motion model.

Multiple target tracking has also been studied in the context of sensor
networks. Ref. [OSS05] proposes a method where tracking is performed hier-
archically, by forming groups around supernodes. Observations are first fused
locally, and then transmitted to the corresponding supernode. In addition,
tracks from different supernodes are combined. In Ref. [VGWO05], only one
sensor node is focused on each target at any time (leader node). However,
leader nodes also take into account the possible existence of other targets.
Ref. [SMK"07] considers binary proximity sensors, i.e., sensors that produce

6

a single bit of output (‘1” when one or more targets are in the sensing range
and ‘0’ otherwise). The authors show how to count the number of distinct
targets, given a snapshot of the sensor readings.

Finally, the idea of applying MTT techniques for the reconstruction object
trajectories from anonymized data, was first introduced in Ref. [HGO05]. In
this work, the authors use five real GPS paths and show that Reid’s algorithm
is able to associate the majority of the measurements with the correct objects.
However, their objective is not how to efficiently track multiple targets, but
rather how to enhance the privacy of the users through path perturbation.
In particular, they propose an algorithm that modifies the actual dataset, so
that, when at least two users are in close vicinity, their paths are crossed.

4 Tracking Algorithm

In this section, we discuss the details of our MTT algorithm. We begin
in Section 4.1 with a brief overview of the min-cost max-flow problem in
graph theory. In Section 4.2 we describe how to construct the graph from
the history of location measurements, while in Section 4.3 we introduce the
implementation of the algorithm. Finally, in Section 4.4 we analyze the
computational complexity of our method.

4.1 Preliminaries

A flow network [CLRSO01] is a directed graph G = (V, E), where V is a set
of vertices, F is a set of edges, and each edge (u,v) € E has a capacity
c(u,v) > 0. If (u,v) ¢ E, it is assumed that c¢(u,v) = 0. There are two
special vertices in a flow network: a source s and a destination . A flow in
G is areal-valued function f : V xV — R, satisfying the following properties:

1. Capacity constraint: For all u,v € V| we require f(u,v) < c¢(u,v).
2. Skew symmetry: For all u,v € V| we require f(u,v) = —f(v,u).

3. Flow conservation: For all u € V — {s,t}, we require > __,, f(u,v) =
0. In other words, only s can produce units of flow, and only ¢ can
consume them.

The max-flow problem is formulated as follows: given a flow network G, find
a flow of maximum value between s and .

The min-cost maz-flow problem is a generalization of max-flow, where for
every u,v € V the edge (u,v) has a cost w(u,v), and we require w(u,v) =
—w(v,u).

The cost of a flow f is defined as

cost(f) = Z w(u,v) f(u,v)

(u,w)ER

and the objective of the min-cost max-flow problem is to find the max-flow
with the minimum cost.

4.2 Problem Transformation

A straightforward transformation of the MTT problem into a flow network is
shown in Figure 2. Flow units are produced at the source s and consumed at
the sink ¢. All the edges have a capacity equal to 1 in the forward direction,
and 0 in the reverse direction. Also, every edge (u,v) in the middle of the
network (as shown in the figure) has a cost value w(u,v) in the forward
direction, and a value —w(u,v) in the reverse direction. The rest of the
edges have zero cost.

Figure 2: MTT flow network

The N vertices that are directly connected to s, correspond to the first
snapshot of measurements (one vertex for each location). Following these
vertices, are a series of columns, containing N2 nodes each. Notice that
every node in these columns is identified by a triple (¢;, p;, p;), which has the
following meaning: if a positive amount of flow runs through this node, then
the underlying object moves from location p; in timestamp ¢; to location p;
in timestamp t;;,. Consequently, edge (t;, pi, pj) — (tit1,pj, Pr) represents a
partial trajectory from three consecutive time-stamps (p; — p; — px), where
i, Dy Pr € [1..N].

The cost value for the aforementioned edge is equal to the association
error for the third measurement. As shown in Figure 3, if the first two
measurements (p; and p;) belong to the same track, their values can be used
to predict the next location of the object (the term t’ti is necessary, because
we do not assume synchronized measurements). Theréfore, for every possible
location pg, we can calculate the error of associating this measurement with
any of the existing tracks. This definition of error is also used in Ref. [Rei79).
Notice that our method minimizes the sum of errors across all trajectories
(similar to multiple hypotheses tracking), as opposed to methods that work
in a single scan.

Di Dy Predicted: pﬁ(pj-p")tit;]

Pk

Figure 3: Association error

Finally, the N nodes connected to the flow sink (¢) correspond to the last
set of measurements, and indicate the final positions of the moving objets.
To summarize, the total number of vertices in the flow network is |V| =
O(MN?), while the total number of edges is |E| = O(MN?3).

It is easy to notice, though, that the above flow network may lead to
incorrect trajectories, by associating a single point with multiple tracks. For
instance, if in the final solution we allow a positive amount of flow through
edges (1,1,1) — (2,1,1) and (1,2,1) — (2,1,2) (Figure 2), then location 1
in timestamp 2 belongs to two different trajectories. In order to overcome
this limitation, we create a bottleneck edge (with capacity 1) for each mea-

9

surement that only allows a single unit of flow (i.e., track) to go through.
We call this structure a block, and it is shown in Figure 4.

Figure 4: Flow network with N blocks

Although this approach solves the multiple assignment problem, it creates
a new one, since each block consists of only 2V 4 1 edges; however, in the
original network (Figure 2) there are N? edges with cost values associated
with them. Therefore, we modify the block structure (as depicted in Figure
4), and replace each block with 2N vertices and N? edges. The result is
shown in Figure 5. The edges connecting the two middle columns have the
same cost values, as explained in the context of Figure 2. The remaining
edges have a cost equal to zero, i.e., they do not affect the process of the
min-cost max-flow calculation.

Another difference in the modified block structure compared to the rest
of the flow network, is that we allow edges to run in the reverse direction

10

Figure 5: Modified block structure

(with a negative cost, as explained in Section 4.1). Specifically, when a
positive amount of flow runs through a certain block, that block is automat-
ically marked as active and the identifier of the edge occupying the block
is recorded. An active block may only output a single flow unit, so any
additional incoming flows have to be redirected backward.

In particular, a new flow is forced back through the reverse path of the
existing flow, in order to select a new location in the previous timestamp.
This is depicted in Figure 6(a), where the block is occupied by the flow with
cost wi. When a new flow enters from vertex (2,2,1), it is only allowed
to follow the path indicated by the arrows, which takes the flow in the re-
verse direction towards vertex (2,1,1). Next, as shown in Figure 6(b), the
incoming flow enters the block of the previous timestamp, where it is again
directed to vertex (2, 1,2). Consequently, it is forced to select measurement
2 at timestamp 3 (instead of measurement 1), which results in two distinct
trajectories.

11

(b) The above flow selects a different location

Figure 6: Functionality of new block structure

4.3 The MTT Algorithm

We have a single source s that needs to send a total of IV units of flow towards
the destination ¢. Among all the feasible max-flows, we are interested in
finding the one with the minimum cost. A very efficient method for solving
the min-cost max-flow problem is the Successive Shortest Path Algorithm
[AMO93]. It leverages the Ford-Fulkerson algorithm [CLRS01] that solves the
max-flow version of the problem. The Ford-Fulkerson algorithm starts with
flu,v) =0 for all u,v € V, and works iteratively by finding an augmenting
path where more flow can be sent. The augmenting paths are derived from
the residual network Gy that is constructed during each iteration. Formally,
Gy = (V,Ey), where Ef = {u,v € V : ¢(u,v) > 0}. ¢f(u,v) is called the
residual capacity, and it is equal to c(u,v) — f(u,v).

In the Successive Shortest Path Algorithm, instead of finding any aug-
menting path p, we find the path with the minimum cost (given the cost
values of the edges on the residual graph). Since our flow network contains
costs with negative values (inside the blocks of Figure 6), we need to utilize
the Bellman-Ford algorithm [Bel58] for the shortest path calculations. This
is not very efficient, though, as the Bellman-Ford algorithm has a complexity
of O(|[V| - |E]). In our network, this translates to O(M?2N?).

12

Instead, we use a well-known technique called vertex potentials, which
can transform the network into one with non-negative costs (provided that
there are no negative cycles). For every edge (u,v) € E, where vertex u has
a potential p(u) and vertex v a potential p(v), the reduced cost of the edge
is given by: w,(u,v) = w(u,v) + p(u) — p(v) > 0. It can be proved that
the min-cost max-flow problems with edge costs w(u,v) or w,(u,v) have the
same optimal solutions. Therefore, by updating the node potentials, we can
utilize a more efficient shortest-path algorithm during the iterations of the
Ford-Fulkerson algorithm. Node potentials are initially set to zero?, and
are updated as follows: after the calculation of the shortest path, for every
u eV, p(u)=pu)+d(s,u), where d(s,u) is the length of the shortest path
from s to u.

A coarse pseudo-code of our MTT algorithm is shown in Figure 7. It
begins by constructing the detailed flow network (as explained in Section
4.2) from the history of measurements H. Then (lines 2-6), it initializes the
flows and node potentials. At each iteration of the Successive Shortest Path
Algorithm (lines 8-13), a single unit of flow is added to the flow network, and
the algorithm terminates after exactly N iterations. The resulting trajecto-
ries are returned by following each unit flow from s to ¢ through the flow
network.

4.4 Complexity

The computational complexity of the MTT algorithm shown in Figure 7,
is directly related to the complexity of the underlying shortest-path algo-
rithm. Theoretically, the fastest running time is achieved with Dijkstra’s
algorithm [Dij59], using a Fibonacci heap implementation for the priority
queue. The complexity of Dijkstra’s algorithm is O(|V]log|V| + |E|) =
O(MN?*log(MN?)+ MN?) ~ O(MN3). Thus, the total running time (due
to N iterations) is O(M N*).This corresponds to the main contribution of our
work, i.e., a multiple hypotheses tracking algorithm that works in polynomial
time, instead of exponential.

We have also experimented with other implementations of shortest-path
algorithms, which produced similar, and in some cases better, running times
compared to the aforementioned method. For instance, the computational

2Tf there are negative costs, Bellman-Ford must be run initially to remove them. In our
case, however, we do not have negative costs before the first iteration, since none of the
blocks are active.

13

Algorithm MTT (H,M,N)
1. Construct flow network from H;
// Initialize flows
2. for each (u,v) € E
f(ua U) =0;
f(v, u) =0;
// Initialize node potentials
for each u e V
p(u) = 0;
fori=1to N
Find shortest path p from s to ¢ in Gy;
// Update node potentials
9. foreachueV
10 p(u) = p(u) + d(s, u);
// Augment flow across path p
11. for each (u,v) € p
12. flu,v) = f(u,v) + 1;
13. f(vv U) = _f(v7 u);

14. return N trajectories;

Ll

P N oo

Figure 7: The MTT algorithm

complexity of the Fibonacci heap structure has a large hidden constant, and
a simple binary heap is often more efficient. The overall complexity of this
method is O(N(|V|+|E|)1log|V]) ~ O(MN*log(MN?)). An interesting ap-
proach, which works surprisingly well, is to utilize Bellman-Ford’s algorithm
for finding the shortest paths. Even though Bellman-Ford runs in O(M?N?)
for our flow network, in practice it works much faster, due to the “left-to-
right” structure of the graph®. Furthermore, Bellman-Ford’s algorithm works
with negative costs as well, meaning that we do not have to maintain node
potentials.

A final remark, regarding the running time complexity of the algorithm,
concerns the complexity of accessing the edges of the flow network. In par-
ticular, the network presented in Section 4.2 is very strict and can be con-
structed automatically. Furthermore, the location of every node on the net-

3 Actually, we also enhanced the functionality of Bellman-Ford’s algorithm with a pro-
cessing queue (for vertices), which reduces the O(|V| - |E|) complexity.

14

work can be calculated in constant O(1) time, using simple formulas. Also,
we can identify the start and end node of every edge in the network in O(1)
time, given the unique number of this edge.

To conclude, the space complexity of our method is equal to amount of
storage required to store the |E| edges of the flow network (around 20 bytes
for each edge). Therefore, the space complexity of our MTT algorithm is
O(MN?3).

5 Experimental Evaluation

In this section, we evaluate the performance of the proposed MTT algo-
rithm, and compare it with a GNN implementation (using clustering) that
is described in Ref. [KNS04]. This approach works in low polynomial time
with a complexity of O(MN?), and was shown to have the best performance
among other MTT techniques in the detailed experimental evaluation of Ref.
[LHB99]. Notice that we do not include Reid’s MHT algorithm [Rei79] in this
comparison, since it could not produce any results within a reasonable time
limit. In the following plots, we use “GNN” to label the curves corresponding
to the GNN approach, and “MCMF” to label our own algorithm.

For generating the object trajectories, we randomly select a starting po-
sition and a destination for each object, which is uniformly distributed in a
[—10000, 10000]* workspace. The object then follows a nonlinear trajectory
(with some velocity) between the two points. Upon reaching the endpoint, a
new destination is selected (that diverges slightly from the current trajectory)
and the same process is repeated (with a different velocity).

In each experiment we generate /N random trajectories that are sampled
for a period of M timestamps. We then run the corresponding MTT algo-
rithms (without the object ids) and collect the resulting trajectories. These
trajectories are compared to the original ones, where we measure the success
rate, i.e., the percentage of measurements that are associated with the correct
trajectory. We use the CPU time and the success rate as the performance
metrics. Table 1 summarizes the parameters under investigation, along with
their ranges. Their default values are typeset in boldface. In each experiment
we vary a single parameter, while setting the remaining ones to their default
values.

Figure 8 shows the running time of the two methods as a function of the
object cardinality. As expected, MCMF is much slower than GNN, but it

15

Parameter Range
Number of objects (V) 10,30,50,100
Number of timestamps (M) 10,50,100,150
Object speed slow,medium,fast,faster

Table 1: System parameters

improves considerably over the exhaustive MHT technique (which fails to
terminate even in the simplest of cases). We expect that by employing some
“divide-and-conquer” techniques (e.g., by forming clusters that may be solved
independently of each other) we will be able to scale the proposed method
to much larger datasets (similar to the methods used in Ref. [CKPBSO01,
KNS04]). We will explore this research direction as part of our future work.

1 T T
000 MCMF —m—
GNN —a—
100
o
[}
0,
()
_g 10 L
D
o
(@]
1
0.1 ' '

10 30 50 100
Object cardinality

Figure 8: CPU time vs. object cardinality

The main advantage of our approach over single scan methods is depicted
in Figure 9. This plot shows the accuracy of the trajectory reconstruction
process, in terms of the percentage of correct associations. Even though
GNN achieves a lower running time, its accuracy deteriorates rapidly with
increasing number of objects. This is due to the fact that more objects
exhibit crossing trajectories, which confuses the greedy approach utilized by

16

1w T
) .\. L
0.95 |]
g 09 - 1
% 0.85 | .
(2]
§ 0.8 | ;
o
>
@ 075}]
07 MOMF —m— 1
GNN —a—
0.65 - -
10 30 50 100

Object cardinality

Figure 9: Success rate vs. object cardinality

GNN. Therefore, the results of GNN may be of little value in practice. On
the other hand, MCMF is very accurate and maintains a constant success
rate of over 98%.

A nice example that illustrates the ineffectiveness of GNN when dealing
with crossing trajectories, is presented in Figure 10. In this example, the two
objects move towards each other, until they “meet”; then, they suddenly
change their trajectories and move at opposite directions. GNN makes the
wrong track assignments when the objects are close to each other, just be-
cause these assignments happened to minimize the error at some particular
timestamp. On the other hand, both Reid’s algorithm and MCMF track the
two objects successfully, since they minimize the error across all timestamps.
The slight differences in the output between Reid’s algorithm and ours, is
due to the filters that are used to smooth the trajectories (Kalman filter for
Reid, as opposed to a simpler filter for MCMF).

Next, we investigate the impact of the history length on the running time
of the two techniques. Figure 11 shows the CPU time for GNN and MCMF,
as a function of M. Clearly, both algorithms scale linearly with M, which
verifies the complexity analysis of Section 4.4.

Figure 12 illustrates the effect of M on the accuracy of GNN and MCMF.

17

(a) Reid’s MHT (b) MCMF (¢c) GNN

Figure 10: Trajectory reconstruction for different methods

1 T T
000 MCMF —&—
GNN —a—
100 ¢ 5
o
o
L2,
o
£ 10 5
2
o A
(@)
1E 4
A
0.1 : '
10 50 100 150

Number of timestamps

Figure 11: CPU time vs. number of timestamps

Both algorithms remain unaffected by the increasing history length, and
maintain constantly a high level of success rate. MCMF is again better in
terms of accuracy, which is almost 100% in all cases.

Finally, Figure 13 depicts the tracking performance of the two methods, as
a function of the speed of the moving objects. Here, the superiority of MCMF
is clearly illustrated. As the speed of an object increases, the successive

18

L = n

0.95 |]
g 09 - 1
% 0.85 | .
(2]
§ 0.8 | ;
o
>
@ 075t]

07 MOMF —m— 1

GNN —a
0.65 - -
10 50 100 150

Number of timestamps

Figure 12: Success rate vs. number of timestamps

locations of its trajectory move further apart from each other. As a result,
within a snapshot, there may be many measurements that are closer to the
object’s previous location than the correct one. The greedy nature of GNN
is not able to deal with that and, for high speeds, 90% of the associations
are incorrect. MCMF, on the other hand, is practically unaffected by the
moving speed, and its success rate is close to 100%.

6 Conclusions

In this paper, we investigate the feasibility of applying multiple target track-
ing techniques in the context of anonymized trajectory databases. The com-
plexity of existing methods that are based on exhaustive search, grows ex-
ponentially with the number of measurements and, thus, can not be applied
to large databases. Although low polynomial algorithms exist that work well
in practice, the quality of their results deteriorates significantly when the
number of distinct trajectories is large. The main contribution of our work
lies in the novel transformation of the M'TT problem into an instance of the
min-cost max-flow problem. This transformation allows for a polynomial
time solution in O(MN*), where M is the number of timestamps and N is

19

im = = n
0.9]
0.8]
0.7]
0.6]
05 t]
04 1
03 1
0.2 MCMF —=— 1

GNN —a—
0.1 : :

slow medium fast faster
Object speed

Success rate [%]

Figure 13: Success rate vs. object speed

the number of observations in each timestamp. Our initial results indicate
that the proposed method produces very high-quality results, and is able to
associate over 98% of the measurements with the correct trajectories in all

20

cases.

In the future, we plan to extend our work in a number of directions.
First, we will investigate the feasibility of our methods in a more realistic
environment. In particular, we will consider a scenario where (1) new tracks
may be initiated at random timestamps, and (2) location measurements may
be lost due to errors on the wireless channel. Second, we will combine our
methods with clustering, in order to further reduce the computational and
space complexity. Specifically, through clustering, we will partition the track-
ing problem into a number of smaller sub-problems that can be solved more
efficiently.

References

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory,
Algorithms, and Applications. Prentice Hall, 1993.

[2] Y. Bar-Shalom and T. E. Fortmann. Tracking and Data Association.
Academic Press, 1988.

21

[3] R. Bellman. On a routing problem. Quarterly of Applied Mathematics,
16(1):87-90, 1958.

[4] S. S. Blackman. Multiple-Target Tracking with Radar Applications.
Artech House, 1986.

[5] M. Chummun, T. Kirubarajan, K. Pattipati, and Y. Bar-Shalom. Fast
data association using multidimensional assignment with clustering.
IEEE Trans. on Aerospace and Electronic Systems, 37(3):898-913, 2001.

[6] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction
to Algorithms. The MIT Press, 2nd edition, 2001.

[7] E. Dijkstra. A note on two problems in connection with graphs. Nu-
merische Mathematik, 1:269-271, 1959.

[8] B. Hoh and M. Gruteser. Protecting location privacy through path
confusion. In IEEE International Conference on Security and Privacy
in Communication Networks (SecureComm), pages 194-205, 2005.

[9] P. Konstantinova, M. Nikolov, and T. Semerdjiev. A study of clus-
tering applied to multiple target tracking algorithm. In Proc. Interna-

tional Conference on Computer Systems and Technologies (CompSys-
Tech), pages 1-6, 2004.

[10] J. Kubica, A. W. Moore, A. Connolly, and R. Jedicke. A multiple tree
algorithm for the efficient association of asteroid observations. In Proc.

ACM International Conference on Knowledge Discovery and Data Min-
ing (KDD), pages 138146, 2005.

. Leung, Z. Hu, an . Blanchette. Kvaluation of multiple radar tar-
11] H. L Z. H d M. Blanch Evaluati f multiple rad
get trackers in stressful environments. IEEE Trans. on Aerospace and
FElectronic Systems, 35(2):663-674, 1999.

[12] S. Oh, S. Sastry, and L. Schenato. A hierarchical multiple-target tracking
algorithm for sensor networks. In Proc. IEEFE International Conference
on Robotics and Automation (ICRA), pages 2197— 2202, 2005.

[13] D. B. Reid. An algorithm for tracking multiple targets. IEEE Trans. on
Automatic Control, 24(6):843-854, 1979.

22

[14] J. Singh, U. Madhow, R. Kumar, S. Suri, and R. Cagley. Tracking
multiple targets using binary proximity sensors. In Proc. ACM In-

ternational Conference on Information Processing in Sensor Networks
(IPSN), pages 529-538, 2007.

[15] T. Vercauteren, D. Guo, and X. Wang. Joint multiple target tracking
and classification in collaborative sensor networks. I[IEEE Journal on
Selected Areas in Communications (JSAC), 23(4):714-723, 2005.

23

