

Санкт-Петербургский государственный университет Кафедра системного программирования

Разработка серверной части платформы для управления автоматизациями

Александр Андреевич Федькин, группа 20.Б11-мм

Научный руководитель: С.Ю. Сартасов, старший преподаватель кафедры системного программирования **Консультант:** А.В. Полозенко, руководитель группы в ООО «Яндекс.Технологии»

Санкт-Петербург 2023

Введение

- Автоматизация (automation) автоматизированный процесс, который сокращает вмешательство человека в процессы получения, преобразования и передачи информации
- Примеры:
 - Системы восстановления пароля
 - Автоматическая рассылка почты
 - Чат-боты

Проблема

- Текущие автоматизации в компании сложно поддерживать:
 - Конфигурации чат-ботов поддержки (YAML файлы)
 - ▶ Рассылки писем (groovy скрипты)
 - ▶ Маршрутизация обращений пользователей (groovy скрипты)
- Существующие решения для управления автоматизациями не обладают всей необходимой функциональностью одновременно:
 - Нет возможности реализовать необходимые автоматизации в рамках одного инструмента
- Возникает необходимость создания нового инструмента

Постановка задачи

Целью данной производственной практики является разработка серверной части платформы для управления автоматизациями **Задачи**:

- Сформулировать требования к создаваемому продукту
- Произвести обзор существующих инструментов для управления автоматизациями
- Спроектировать архитектуру системы
- Реализовать компоненты системы
- Произвести апробацию системы

Функциональные требования

- Создание, редактирование, версионирование автоматизаций
- Возможность наличия циклов в графах автоматизаций
- Возможность приостановить автоматизацию и ожидать сообщение
- Настройка условий автозапуска (триггеров)
- Возможность создавать автоматизации без опыта в программировании

Нефункциональные требования

- Язык разработки Java или Kotlin
- Кеширование графов
- Неблокирующее взаимодействие с сервисами по НТТР
- Слабая связность компонентов платформы
- Легкая расширяемость

Обзор

Критерий	Nirvana	Airflow	NiFi	PLynx
Версионирование графов	+	土	+	-
Цикличность графов	-	-	-	-
Ожидание сообщения	-	-	-	-
Необходимость опыта в программировании	土	+	土	+

Таблица 1: Сравнение существующих решений

Обзор

Используемые технологии:

- Основа системы:
 - Kotlin
 - Spring boot
 - kotlinx.coroutines
- Хранилище данных:
 - ► Redis + Redisson
 - PostgreSQL + jOOQ + Flyway
- Документация:
 - Swagger

Архитектура

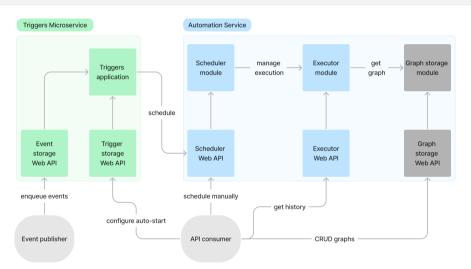


Рис. 1: Диаграмма коммуникации компонентов

Реализация

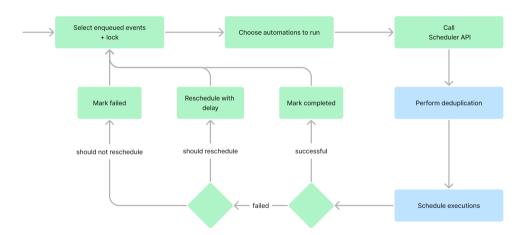


Рис. 2: Принцип работы микросевиса триггеров

Реализация

- read-modify-write производится с оптимистической блокировкой update executions set ... where id = ... and revision = ...
- acquired исполнение назначено на конкретный экземпляр приложения
- released исполнение не назначено

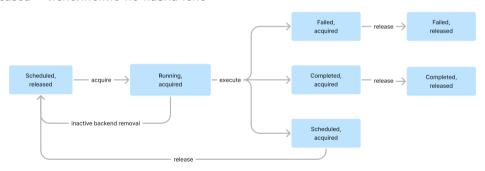


Рис. 3: Жизненный цикл исполнения

Реализация

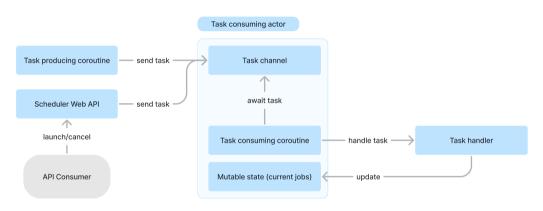


Рис. 4: Принцип работы модуля планирования

Текущее состояние

- Настроены процессы CI/CD
- Настроены окружения для тестирования и промышленной эксплуатации
- Настроены системы мониторинга, оповещения о нештатных ситуациях
- Активный перенос существующих автоматизаций:
 - Рассылка почты
 - Маршрутизация обращений

Результаты

В ходе работы были выполнены следующие задачи:

- Сформулированы требования к создаваемому продукту
- Произведен обзор существующих инструментов для управления автоматизациями
- Спроектирована архитектура системы
- Реализованы компоненты системы
- Произведена апробация системы