
Saint-Petersburg State University

Software Engineering Chair

Group 21.B15-mm

Formalization of definability theory in Lean
Ilya Dudnikov
Internship report

in a «Solution» form

Scientific supervisor:
assistant of computer science department

C.Sc. in Mathematics and Physics
Mikhail R. Starchak

Saint-Petersburg
2023

Contents
Introduction 3

1. Problem definition 4

2. Related works 5
2.1. Lean . 5
2.2. Model theory in mathlib . 5
2.3. igl2020 . 6

3. Implementation 7
3.1. Definability in arbitrary structures 7
3.2. Arithmetic languages and structures 8
3.3. Definability in arithmetic structures 9
3.4. Definability preservation theorem 10

Conclusion 13

References 14

2

Introduction
There is no doubt that mathematics is a remarkably complex field of knowl-
edge. There is a significant number of various definitions and, built upon
those definitions, theorems that need to be rigorously proved. However,
people inevitably make mistakes, which sometimes leads to incorrect proofs.
In a recent paper [6], the authors address some inaccuracies found in [3],
a paper that was published back in 2005, which goes to show how subtle
these mistakes can be and how long it sometimes takes to find them. It is
important to note that the problem reviewed in the paper is not a mere
arithmetic error but an issue concerning definability in arithmetics.
Luckily, there are tools, so-called proof assistants, that can help elimi-

nate human error by shifting the task of checking the correctness of math-
ematical assertions from humans to software. Furthermore, proof assis-
tants can be utilized in formally verifying correctness of software’s behavior,
which is essential to maximize security guarantees. A case in point is Com-
pCert [4], a formally verified optimizing compiler for C, which is intended
to be used in software where high levels of assurance are required.
One particularly interesting field of mathematics that has not been for-

malized in any existing proof assistant is definability theory. It provides
tools for reasoning about the structure of mathematical objects and their
relationships with other objects. Moreover, it is closely related to decidabil-
ity theory, a fundamental tool that facilitates the development of efficient
algorithms and systems.
At the time of writing, Lean’s [5] community is actively working on

formalizing definability theory, and the most fundamental definitions and
theorems have already been implemented. However, the notions of defin-
ability of predicates are still absent. Therefore, our objective is to formalize
some definitions of predicate definability in Lean.

3 Build date: June 1, 2023

1 Problem definition
The goal of this work is to formalize a number of notions concerning first-
order definability of predicates in Lean. To achieve this goal, the following
tasks were set.

1. Formalize the notion of arithmetic languages and arithmetic struc-
tures

2. Prove correctness of these definitions

3. Formalize the notion of definability of predicates in arithmetic struc-
tures

4. Prove definability preservation theorem

4

2 Related works
In this section we will discuss existing related solutions.

2.1 Lean
Lean [5] is a functional programming language that allows for writing correct
and maintainable code. It is based on the calculus of constructions with
inductive types and is often used as a theorem prover. Lean’s features
include:

• Type inference;

• Dependent types;

• Metaprogramming framework;

• Multithreading;

• Verification;

• and more.

Lean also has an extensive user-maintained library, mathlib [8], which
contains plenty of mathematical definitions and theorems from many differ-
ent areas of mathematics, including algebra, probability, model theory and
more, as well as tactics that provide users with efficient tools for theorem
proving.

2.2 Model theory in mathlib
At the time of writing, mathlib’s community is actively working on im-
plementing model theory concepts in Lean. The following constructs are
currently available:

• first-order languages;

• structures;

5

• models;

• definability of sets;

• satisfiability;

• etc.

mathlib defines languages as a pair (functions, relations) without con-
stants, and structures as a pair (fun_map, rel_map) which determine in-
terpretations of each symbol. Although definability of sets is implemented,
notions of definability of predicates are not. Definability of predicates, par-
ticularly in arithmetic structures, as we will later cover, allows us to reason
about their expressive power, and providing formalized tools for such rea-
soning is the fundamental difference of this work from existing solutions.
Furthermore, it is important that it is easy to construct and reason about
different arithmetic structures [2].

2.3 igl2020
In 2020 a group of students from University of Illinois started a project
called igl2020 [7] that aimed to formalize model theory in Lean. The project
was not completed, but numerous definitions were implemented, including
the ones that we need in our work. Within the project, the team successfully
implemented the following notions:

• languages;

• structures;

• terms;

• formulas and sentences;

• etc.

Unlike mathlib, languages and structures in igl2020 are defined as triples
(F,R,C) and their interpretations accordingly, including constants.

6

3 Implementation
In this section we discuss the implementation of definability of predicates
in arbitrary structures and arithmetic structures and introduce definability
preservation theorem.

3.1 Definability in arbitrary structures
Let us first introduce definitions that will be used in this section.
A first-order language L, as it is defined in igl2020, is a tuple (F,R,C)

where F is a set of function symbols, R—a set of predicate symbols and C—
a set of constants. An L-structureM is a tuple (fun_map, rel_map, const)
which determines interpretations of each symbol.

A predicate is a function Nn → {⊤,⊥}.
Let L be a first-order language and M — an L-structure. We say that

a predicate p is definable in the structure M if and only if there exists an
L-formula ϕ(x1, ..., xn) such that for every tuple a ∈ Nn we have ϕ(a) if and
only if p(a). Symbolically, this means

Def(p,M) ⇔ ∃(ϕ : L-formula) (∀(va : N →M.univ) (va |= ϕ⇔ va |= p))

where Def(p,M) is a notion for «p is definable in M» and va is a variable
assignment function. Note that we define definability in a structure and not
in a language since we rely on interpretation.
We now need to clarify what predicates are in terms of Lean and igl2020.

In view of the fact that igl2020 already has definitions of relations and
formulas, defining a structure predicate is redundant. It quickly becomes
clear that defining predicates as relations introduces too many unnecessary
difficulties. The reason for this is the fact that in order to interpret a given
predicate we always have to require a structure in which it is interpreted.
That might not seem as a crucial problem at first glance, but if we go further
and try to define a set of all definable predicates in some structure, we see
the first serious challenge. Mathematically, Def(M) (the set of all predicates

7

that are definable in a given structure M) can be defined as follows:

Def(M) := {p | Def(p,M)}

Since p is a relation, it could be rewritten as L.R n, meaning an L-
relation of arity n. It is cumbersome to implement in Lean for several
reasons.

1. Language L is unknown at the time of constructing this set. Fixing
the language prior to construction limits the set, so this is not a correct
approach.

2. Even if we manage to somehow construct a set of predicates defined in
this way, we obtain a set of relations from arbitrary languages, which
complicates the process of using and extracting valuable information
from it.

Using formulas instead we can overcome some of these difficulties. How-
ever, the set Def(M) is still heterogeneous and it contains formulas of dif-
ferent languages. This can be fixed by limiting the class of considered
structures.

3.2 Arithmetic languages and structures
Arithmetic structures are structures, where relations are defined via arith-
metic formulas. This fact allows for easy reasoning about such structures.
We introduce the following definitions:

1. Arithmetic language is a pair (n, ar) where n is the number of relations
in a language and ar : {0, 1, ..., n − 1} → N+ is a mapping which
specifies the arity of each relation;

2. Arithmetic structure is a pair (rels, ar_proof) where rels is a set of
basic relations and ar_proof is a certificate that proves that the arity
of each relation is correct according to the given signature.

Or in terms of Lean see Figure 1 and Figure 2.

8

structure arith_lang : Type 1 :=
(n : N+) -- number of relations
(ar : fin n → N+) -- arity of each relation

Figure 1: Arithmetic language

structure arith_struc (L : arith_lang) :=
(rels : vector (formula ordered_semiring_lang) L.n)
(ar_proof : ∀ i, formula.count_free_vars_list (rels.nth i) = L.ar i)

Figure 2: Arithmetic structure

Relations in rels are defined by using formulas of ordered_semiring_lang
language. Its signature, ⟨0, 1,+, ∗, <⟩, specifies two constants, two binary
function symbols and one binary predicate symbol.
Let us show that these definitions are correct, that is, prove that arith-

metic languages are indeed languages and arithmetic structures, in turn, are
structures. Indeed, arithmetic languages are languages without constants
and function symbols, but with n predicate symbols of arity specified by ar
mapping. Next, arithmetic structures are structures without constants and
functions and with n relations. Since relations are specified using formulas,
we will consider that

v ∈ (S.R i) ⇔ v |= ϕi

where v : Nn is an assignment to the variables, S is an arithmetic structure,
S.R i — a relation in this structure and ϕi — formulas that specifies this
relation. Considering the fact that our structures are arithmetic structures,
we will evaluate ϕi on the set v using a simpler structure ⟨N; 0, 1,+, ∗, <⟩.

3.3 Definability in arithmetic structures
Now that we have limited the class of structures, the definition of predicate
definability does not change much (see Figure 3).
However, now we are able to define Def(M) (see Figure 4). The resulting

set is no longer heterogeneous because it only consists of formulas of the

9

def predicate_is_definable_in_arith_struc
{L : arith_lang} (S : arith_struc L)
(pred : formula ordered_semiring_lang) :=

∃ φ : formula L, ∀ va : N → N, va |= φ ↔ va |= pred

Figure 3: Predicate definability in arithmetic structures

fixed language ordered_semiring_lang. This also means that we know how to
interpret all of those formulas (that is, with a ⟨0, 1,+, ∗, <⟩-structure). Now
every predicate is defined via this formula and the structure ⟨N; 0, 1,+, ∗, <⟩.

def definable_predicates {L : arith_lang} (S : arith_struc L)
: set (formula ordered_semiring_lang) :=
{ φ : formula ordered_semiring_lang |
predicate_is_definable_in_arith_struc S φ }

Figure 4: Set of definable predicates in arithmetic structures

3.4 Definability preservation theorem
Now we have all necessary prerequisites to prove the following theorem.

Theorem. Let S1, S2 be arithmetic structures such that every basic predicate
of S1 is definable in S2. Then the set of all predicates definable in S2 the
set of predicates definable in S1. Or symbolically,

(∀p ∈ S1.rels (p ∈ Def(S2))) ⇒ Def(S1) ⊆ Def(S2)

Proof. Proof of this theorem on paper is quite straight-forward. However,
Lean’s strict type system enforces a more formal and detailed proof. Let ψ
be a formula such that

∀va (va |= ψ ⇔ va |= ϕ)

for some basic formula ϕ from S1.rels. Then the proof can be conducted
by induction on ψ. Let us consider the most interesting base case: ψ =

10

S1.rel ψα for some ψα. This is exactly when we use the hypothesis from the
theorem statement that every S1’s basic relation is definable in S2.
As for induction cases, it is easy to prove that if ψ1 and ψ2 are definable

in some structure, then so are

• ψ1 ∧ ψ2;

• ψ1 ∨ ψ2;

• ¬ψ1;

• ∃x ψ;

• ∀x ψ.

A sketch of the proof in Lean can be seen in Figure 5. We start by
extracting the formula ψ as discussed above and proceed to use induction.
The proof of the base case mentioned above is essentially an if-then-else
statement: if ψ is a basic predicate of S1, then we use the theorem hypoth-
esis, otherwise it is obvious that ψ = ⊥.

11

theorem subset_if_predicates_definable {L1 L2 : arith_lang} (S1 :
arith_struc L1) (S2 : arith_struc L2) :

(∀ pred ∈ S1.rels.to_list, predicate_is_definable_in_arith_struc S2

pred) → definable_predicates S1 ⊆ definable_predicates S2 :=
begin
intros h1 φ h2,
simp only [definable_predicates, set.mem_set_of] at h2 ⊢,

cases h2 with ψ ψ_h,
induction ψ generalizing φ,
. . .
{ have em := em ψ(_n ∈ (vector.of_fn L1.ar).to_list),

cases em,
{
have g := rel_to_formula S1 ψ_α ψ_α_1 (by {

simp at em,
exact em

}),
rcases g with ⟨g_w, g_h1, g_h2⟩,

have h2 := h1 g_w g_h1,
cases h2 with γ γ_h,
use γ,

intro va,
simp only γ[_h, ← g_h2, ψ_h] },

{ use ⊥',
have h2 : formula.rel ψ_α ψ_α_1 = ⊥',
simp ←[ψ_h, h2] } }

end

Figure 5: Proof of definability preservation theorem

12

Conclusion
In conclusion, let us summarize the main results of this work.

1. Notion of arithmetic languages and arithmetic structures was formal-
ized in Lean

2. Correctness of introduced definitions was proven.

3. Notion of predicate definability was implemented.

4. Definability preservation theorem was proven.

The code of the formalization is available at GitHub [1].
As for the prospects, we are planning to allow arithmetic structures to

also have function symbols whose graphs are arithmetical predicates, since
limiting arithmetic structures to only have relations was a simplification.
Another direction one might consider is generalizing notions of definabil-

ity of predicates to arbitrary structure and/or proving more fundamental
lemmas and theorems about arithmetic structures. Specifically, we hope to
formally prove theorem 2 of [6].

13

References
[1] URL: https://github.com/airh4ck/igl2020/.

[2] Bès Alexis. A Survey of Arithmetical Definability // HAL. ––
2002. –– Vol. 2002, no. 0. –– URL: http://dml.mathdoc.fr/item/
hal-00091580.

[3] Bozga Marius, Iosif Radu. On Decidability Within the Arithmetic of
Addition and Divisibility // Foundations of Software Science and Com-
putational Structures / Ed. by Vladimiro Sassone. –– Berlin, Heidelberg :
Springer Berlin Heidelberg, 2005. –– P. 425–439.

[4] CompCert. –– URL: https://compcert.org/compcert-C.html.

[5] Lean. –– URL: https://leanprover.github.io/.

[6] Pérez Guillermo A., Raha Ritam. Revisiting Parameter Synthesis for
One-Counter Automata. –– Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik, 2022. –– URL: https://drops.dagstuhl.de/opus/volltexte/
2022/15753/.

[7] igl2020. –– URL: https://github.com/vaibhavkarve/igl2020.

[8] mathlib. –– URL: https://github.com/leanprover-community/
mathlib.

14

https://github.com/airh4ck/igl2020/
http://dml.mathdoc.fr/item/hal-00091580
http://dml.mathdoc.fr/item/hal-00091580
https://compcert.org/compcert-C.html
https://leanprover.github.io/
http://dx.doi.org/10.4230/LIPICS.CSL.2022.33
http://dx.doi.org/10.4230/LIPICS.CSL.2022.33
https://drops.dagstuhl.de/opus/volltexte/2022/15753/
https://drops.dagstuhl.de/opus/volltexte/2022/15753/
https://github.com/vaibhavkarve/igl2020
https://github.com/leanprover-community/mathlib
https://github.com/leanprover-community/mathlib

	Introduction
	Problem definition
	Related works
	Lean
	Model theory in mathlib
	igl2020

	Implementation
	Definability in arbitrary structures
	Arithmetic languages and structures
	Definability in arithmetic structures
	Definability preservation theorem

	Conclusion
	References

