Code Reuse With Transformation Objects

Dmitri Boulytchev

St.Petersburg State University,
Saint-Petersburg, Russia
dboulytchev@math.spbu.ru

Abstract. We present an approach for a lightweight datatype-generic
programming in Objective Caml programming language® aimed at bet-
ter code reuse. We show that a large class of transformations usually
expressed via recursive functions with pattern matching can be imple-
mented using the single per-type traversal function and the set of object-
encoded transformations, which we call transformation objects. Object
encoding allows transformations to be modified, inherited and extended
in a conventional object-oriented manner. However, the data represen-
tation is kept untouched which preserves the ability to construct and
pattern-match it in the usual way. Our approach equally works for regu-
lar and polymorphic variant types [1] which makes it possible to combine
data types and their transformations from statically typed and separately
compiled components. We also present an implementation which allows
to automatically derive most functionality from a slightly augmented
type descriptions.

Keywords: datatype-generic programming, object-oriented program-
ming, code reuse

Introduction

Statically typed functional languages are widely renowned for the gears they
provide for describing complex data structures and their transformations. One of
the most utilized tools are algebraic data types (ADTs) which allow to construct
graph-shaped data structures and inspect them by matching against patterns.
Parametric polymorphism makes it possible to apply transformation functions
for various concrete versions of described data structure thus facilitating mas-
sive code reuse. However transformations for regular ADT's suffer from the lack
of extensibility: there is no easy way to modify/update their behavior without
the complete reimplementation (at least for the recursive ADTs, which are the
most important case). In contrast, in the parallel universe of object-oriented
programming the specialization or reuse of behavior for the cases of interest is a
matter of general practice; however, a certain price in the form of overweighted
object representation and mixing of code and data is paid on that way. The win-
ning combination of both approaches — polymorphic ADTs and their extensible

! http://caml.inria.fr

transformations — looks quite promising for the languages which combine func-
tional and object-oriented constructs.

We present a framework for Objective Caml? which is based on object rep-
resentation of transformations. Object encoding allows transformations to be
inherited, modified and reused; transformation objects contain no data, which
provides perfect code and data separation and preserves all other means of ma-
nipulation for the regular ADTs.

The set of transformations expressible using our approach can easily be char-
acterized in terms of classic cycle-free attribute grammars [5]. If we interpret the
data structure as a derivation tree, the result of the transformation as a synthe-
sized attribute and all additional parameters of the transformation as inherited
attributes then any transformation can be implemented using our framework if
no attribute value depends on itself.

Another interesting feature of the approach is that it provides a clear and
well-established interface between generic and specific code. Thus the framework
we describe is in turn becomes extensible. We equip it with a plugin system
which implements in a user-defined manner the similar functionality as “deriv-
ing” primitive in Haskell.

Our solution is completely type-driven which allows automatic implementa-
tion. We implemented our approach in the form of cam1p5® syntax extension and
runtime support library.

All code snippets in the following sections are written in Objective Caml.
While we strived to make all examples as much self-contained as possible a
certain familiarity with Objective Caml fundamentals is still desirable, especially
with those concerning object-oriented constructs and types.

Most of the examples in the following sections refer to the transformations
and tasks typical for the domain of programming languages implementation and
compilers since this is the area of our interest. We believe, however, that the
proposed functionality is generic enough to be used in other areas as well.

1 Transformation Objects: an Overview

In this section we present transformation objects as a programming pattern,
provide some motivations and describe the proposed solution in a nutshell.

Consider the type of lambda expressions and its visualization function —
show:

type lam =
Var of string

| App of lam % lam
| Lam of string * lam

let rec show = function
| Var s —"Var (7 s ")

2 https://code.google.com/p/generic-transformers
3 http://pauillac.inria.fr/~ddr/camlp5

2 9

| App (x, y) = 7App (” ~ show x "~ 7, " show y ©)
| Lam (}(7 _y) 4) 77Lam (77 ~ X ~ b , ” ~ shOW y ~ ’7)77
Sometimes (actually, more often than one would desire) the behavior of such
a function has to be slightly modified — for example, one may need to show

“Var s” as just “s”, omitting the constructor name. Since the modification is
quite modest, we might expect a significant code reuse. The naive modification

let better_show = function
| Var s —» s
| x — show x

however, would not work as we desired — we resorted to the “old” show which was
left unmodified. Thus our modification will work only for the top-level Vars. The
only remaining option is to rewrite show completely which is at least regretful
and at most impossible (for example, when we deal with an external library
function with hidden implementation).

The desired extensibility can easily be provided by the conventional object-
oriented encoding: we can represent expressions using a hierarchy of classes (one
class per a constructor) and provide in each class corresponding method show.
However, thus we would lose the ability to match expressions against patterns;
moreover, object data representation would force us to implement virtually every
expression-processing function as a set of per-class methods scattered through
various class definitions. Apart of being much more verbose this solution would
be more error-prone and less readable.

The better solution would be to apply object-oriented encoding to the trans-
formation itself, not to the transforming data. So transformation objects come
into consideration. Transformation object is just an object which contains some
functionality needed to perform the transformation. If we deal with the algebraic
data types then the appropriate representation for a transformation object for
a given type is a collection of per-constructor transformation methods. Besides
that we need a function which performs a pattern-matching on the transforming
data structure and dispatch the control to the transformation object’s methods.
Taking these considerations into account we may implement our show function
in the following manner:

let rec generic_show t e =
let self = generic_show t in
match e with
| Var s — tH#c_Var s
| App (x, y) — ti#c_App self x y
| Lam (x, y) — t#c_Lam self x y

class show_lam = object

method c_Var s =7"Var (" ~ s " 7")
method c_App (f : lam— string) x y="App (” " £x "~ 7,7 " £y "~ ")
method c_Lam (f : lam — string) x y="Lam (” " x ~ 7,7 " fy "~ ")

end

let show e = generic_show (new show_lam) e

Here generic_show is a top-level function parameterized by the transforma-
tion object t. It exhaustively matches the expression against patterns and dis-
patches the control to the appropriate transformation object methods. Note that
some of these methods have to be additionally parameterized by the transfor-
mation function in question (self) since we do not want them to be directly
dependent on generic_show (this would compromise the very idea of extensibil-
ity).

Now the customized version of show can really be implemented in a reusable
(albeit a bit verbose) manner:

let better_show e = generic_show (object inherit show_lam
method c_Var s = s
end) e

While this time we managed to provide an appropriate implementation the
generality of the described approach is still unclear. Do we need to implement
both the traversal function and transformation-specific class each time we need
an extensible solution? Can this process be automated in a type-driven manner?

The key observation we can make so far is that the traversal function
(generic_show) in our example turned out to be more generic that we expected
— it contains no specific “show” functionality apart from the transformation
object it takes as a parameter. In the following section we describe a generalized
version of presented pattern which allows to systematically produce transfor-
mations from type descriptions. Each such transformation is expressed using a
single per-type traversal function which is generated by the framework as well.

2 Type-Driven Transformation Objects

In this section we describe a per-type abstract attribute transformer, type-
specific traversal function and some auxiliary notions needed for our approach to
work. We call our transformers attribute since their design was inspired by the
notion of computations defined by attribute grammars [5]. However, we do not
use attribute grammar formalism directly as a sort of declarative description; we
rather borrow some principles and terminology to make the foundations of our
approach more conventional.

We provide camlp5 syntax extension which generates type-specific traversal
function, abstract transformer and some additional decorations from a type dec-
laration. For example

@ type lam =
Var of string
| App of lam * lam
| Lam of string % lam

defines the type itself, its traversal function and abstract transformer (from now
on we will gray out the constructs, specific to our framework, including extended

syntax). With this definition we may use predefined type-indexed traversal func-
tion transform(lam) and abstract transformer class @lam to implement various
concrete transformations.

Suppose we have a polymorphic ADT

type [ai] t = [C; of [#]]]

where we use square brackets to denote a vector of something; here «; denotes
i-th type parameter, C; — j-th constructor of the type t, [tij] — vector of
j-th constructor argument types. The transformation we are looking for has the
following type:

L= [ai] t = 0o

Here « — the type variable which designates the type of inherited attribute —
some auxiliary argument which might be helpful to perform the transformation,
o — the type variable which designates the type of transformation’s result.
We call this result synthesized attribute. Since t is polymorphic, to perform the
transformation we might need some transformations of its type arguments. Thus
our type evolves into

Lo =t 50— [ai] t =0

We denote 1 «; the type of synthesized attribute for the transformation of
«;. Note that we treat type parameter transformations as attribute transforma-
tions as well; note also that these transformations can provide different types of
synthesized attributes, but operate on the same type of inherited attribute. This
may look somewhat restrictive; however, we always can “lift” different types of
inherited attributes into their sum type.

The reasoning given above lets us to provide the type signature of abstract
transformer. Abstract transformer for a given type is a virtual? class; all con-
crete transformation objects for the type are implemented in our framework as
instances of its subclasses. Abstract transformer is polymorphic over the types of
inherited and synthesized attributes, type parameters of the transforming type
(if any) and the types of synthesized attributes for those type parameters. Ab-
stract transformers are an important part of our solution. Since we are aimed at
code reuse based on inheritance we can not use implicit transformation objects
(which can not be inherited in Objective Caml) [3]; on the other hand polymor-
phic class definitions as a rule require precise annotations for the types of their
methods. These type annotations in our case can be quite verbose and tedious to
specify. Providing the single supertype for all concrete transformations allows us
not only to specify the type of the traversal function but also to automatically
instantiate all types of concrete transformation object methods.

The header of the abstract transformer for the type t looks like®

virtual class [[as, T @i, ¢, o] @t

4 In the context of Objective Caml “virtual” means “purely abstract”.
5 In Objective Caml classes can be polymorphic; type parameter list enclosed in a
square brackets should precede the name of the class in its declaration.

Here the nested pair of square brackets again indicates the vector of pairs of
type variables. Note that we need to know only the vector of type parameters to
decide on the signature of the abstract transformer for that type. For example,
in the concrete syntax, if we have a type ("a, ’b, ’c) t, then the abstract
transformer for t has the following signature:

virtual class [’a, ’ta, ’'b, ’tb, ’c, ’tc, ’inh, ’syn] @t

Here ’ta, 'tb, ’tc designate the types of synthesized attributes for the trans-
formations of corresponding type parameters, 'inh, *syn — types of inherited and
synthesized attributes for the transformation for t. By et we denote some syn-
thetic name for the abstract transformer’s class since in Objective Caml classes
and types share the same namespace.

The next component of our solution is a per-type traversal function which
performs pattern matching and passes control to the transformation object. Tak-
ing into account all previous type considerations its type should look like

[t — a; =T o] = [lau, T il 0] #et =1 — o]t — 0

A B

Here A outlines the vector of transformations for the type parameters, B —
the type of concrete transformation object, which should be an arbitrary properly
instantiated subtype of abstract transformer @tS. The rest of components are
inherited attribute type, type of data structure to transform and the type of
synthesized attribute.

The last thing we need to define is the set of parameters which are passed
to the methods of transformation object during pattern matching. Since we
are dealing with attribute transformations we must provide for each method
an inherited attribute, which comes as a parameter to the traversal function.
Besides that, each method may need synthesized attributes for some (sub)values
of the matched value. In our framework synthesized attributes can be calculated
only by applying some transformation functions. The only functions available
are those for type parameters (supplied as arguments) or the transformation for
the type of interest.

The exact implementation of the pattern matching within the traversal func-
tion is as follows: for the constructor C of ¢; we add the following case to the
matching construct:

| C [p:] as s— tm_C i 5 [pi]

Here t — transformation object, i — inherited attribute (both are passed to
the traversal function as parameters). 5 and p; are augmented versions of s (the
original node of the transforming data structure) and p; (all proper subvalues of
s). Namely, we augment these values with functions which deliver synthesized
attributes when applied to inherited ones. The rules for the augmentation are
as follows:

5 In Objective Caml, #t denotes the arbitrary subtype for a class type t.

1. if the type of the augmenting value corresponds to a certain type parameter,
we augment it with the corresponding transformation function for that type
parameter;

2. if the type of the augmenting value is [a;] t, where a; — type parameters, t
— the type we are implementing the current traversal function for, then we
augment it with the partial application of the same traversal function to the
transformation functions for corresponding type parameters and the same
concrete transformation object;

3. in all other cases we do not augment the value.

In cases when we perform the augmentation we also augment the value with
the set of all transformation functions for all type parameters.

The augmented value is represented as a structure type a with the following
fields:

— x — the value which was augmented;

— f — the transformation function for the values of the type of x;

— fx — the partial application of £ to x;

— tp — the set of transformation functions for all type parameters (encoded
as object with corresponding methods).

We demonstrate these constructs by the following example. Let we have the
following type definition:

type (’a, 'b) t =

A of ’a
| B of 'b
| Tof (’a, 'b) t

The traversal function for this type is

let rec t_gcata fa fb trans inh subj =
let rec self = t_gcata fa fb trans
and tpo = object method a = fa method b = fb end in
match subj with
A pl — trans#c_A inh (make self subj tpo) (make fa pl tpo)
| B pl — trans#c_B inh (make self subj tpo) (make fb pl tpo)
| T pl — transfc_T inh (make self subj tpo) (make self pl tpo)

Since we have two type parameters, the traversal function takes two trans-
formation functions — fa and fb — as its parameters. Then, we need one aug-
menting function for the type itself ((’a, ’'b) t). This function is called self.
Finally, we need a collection of transformation functions for the type parame-
ters encoded by an object with corresponding method names — hence tpo. The
augmenting primitive here is called make.

Now, when we are implementing the concrete transformation class, we may
think in terms of inherited and synthesized attributes and attribute transforma-
tions. For example, writing the method for the constructor A, say

method c_A inh s x = ...

we know the following:

— inh is the inherited attribute;

— s.f and x.f equals to the same transformation function we are dealing with
now;

— s.tp#a is the transformation function for the type parameter ’a;

— s.tp#b is the transformation function for the type parameter ’b;

— s.fxis a function which calculates the synthesized attribute for s with respect
to some inherited attribute (for example, but not necessary, inh);

— x.fx is a function which calculates the synthesized attribute for x with respect
to some inherited attribute (for example, but not necessary, inh).

Note that due to a late binding for objects the concrete implementations of
augmenting functions can be redefined in subclasses. This property is important
for code reuse.

Despite being rather simple in design the approach in question turned out to
be tricky in implementation via a syntax extension due to a limited amount of
information available about externally declared types. Another problem arises
for mutually-recursive type declarations — the naive implementation using
mutually-recursive classes does not provide extensible solution since each ab-
stract transformer explicitly references abstract transformers for co-recursive
types. To provide extensible solution we had to abstract these transformers by
a certain parameterization which in implementation resulted in dealing with
parameterized classes, mutability, class-level let-bindings and initializers. We
omit exact description since it is too technical and specific. Finally, polymorphic
classes in Objective Caml are regular, which means that only instances with the
same type parameter bindings can be created within their scopes. While this
limitation in principle can be worked around using extra parameterization via
explicitly-polymorphic functions we did not implement this option yet.

Nevertheless apart from the “regularity” limitation (w.r.t. to mutual recur-
sion) our syntax extension provides complete support for ADTs, polymorphic
variant types [1], structures and tuples, including mutually recursive type dec-
larations.

The diversity of generic type-driven transformations is widely acknowledged.
Even for the string conversion functions like show there are many various options
— for example, conversion to HTML or XML formats, printer combinators,
incremental append into string buffer etc. We admit that all these cases are rather
simple and regular; however, the simpler transformation the more distressful it
would be to implement it manually for each type of interest.

Our syntax extension can be customized by the end-user via rather simple
plugin interface. For example, in the following fragment

@ type lam =
Var of string
| App of lam * lam

| Lam of string * lam with show

show designate plugin name; there are no hardcoded transformations in our sys-
tem at all; “with” construct plays role of plugin invocation primitive.

Each plugin is dynamically loaded during the syntax extension phase and
generates concrete transformation on a per-type (actually, per-constructor) ba-
sis. Since any transformation in our framework is represented by a certain class,
each plugin actually generates one class per type. To address plugin-defined
transformation p for the type t extended construct @pl[t] can be used. Most
work is performed by the core system; the plugin itself provides rather simple
parameterization plus a concrete function to generate the body for each method.
For example, the implementations of show contains less than 50 lines, about 1/3
of which are just interface ceremonial code.

3 Examples

In this section we present some use cases which we believe demonstrate the
potential of our framework in terms of code reuse.

3.1 Extensible fold

Folds, or catamorphisms [11, 4], represent a wide class of useful transforma-
tions. We introduce here an extensible generic fold which can be used to derive
these transformations.

For our main example we may implement the following transformation class:

) I

class [’a] fold_lam = object inherit [’a, ’a] @lam
method c_Var s _ _ =8
method c_App s _ x y= x.f (y.f s)
method c_Llams _ x y= y.f s

end

This implementation looks completely vacuous at the first glance: fold_lam
simply threads the inherited attribute through all the nodes and finally returns
it untouched. However, this behavior is just what we need as a basis for various
transformations which can be obtained by a proper modification. For example,

class vars = object inherit [S.t] fold_lam
method c_Var s _ x = S.add x s
end

gives us the set of all variables occurred in a lambda-term (here S.t stands for the
type of string sets). The set of all free variables can be calculated by inheriting
from the class vars:

class free_vars = object inherit vars
method c_Lam s _ x 1 = S.union s (S.remove x (1.fx S.empty))

end

Q@ type var = [‘Var of string]

class [’v] var_eval = object inherit [string — ’v, ’v] Q@var

method c_Var s _ x = s x
end

)

Q type ’a arith = [‘Add of ’a % ’a | ‘Mul of ’a % ’a]
class [’a, ’'b] arith_eval = object inherit [’a, int, ’b, int] Qarith

method ¢c_Add s _ 1 r= 1l.fx s + r.fx s

method ¢c_Mul s _ 1 r= 1l.fx s x r.fx s
end
Q@ type ’'a expr = [var | ’a arith |

class [’a] expr_eval = object
inherit [’a, int, string-int, int] Qexpr

inherit [int] var_eval
inherit [’a, string — int] arith_eval
end

let rec eval s e = transform(expr) eval (new expr_eval) s e

Fig. 1: Solution for an instance of the Expression Problem

As we can see, in the implementation of vars we reused two cases from
fold_lam, and in the implementation of free_vars we (again) reused two cases
from vars. Without late binding we would have to provide two different functions
with complete case analysis to fold with.

The similar considerations are applicable to yet another important trans-
formation — “map”. Indeed, having a “default” implementation in the form of
copying we may then redefine its behavior for the “interesting” cases providing
various useful concrete transformations. Predefined plugins for fold and map are
included in our framework among show.

3.2 “Expression Problem”

“Expression problem” [12] is a widely recognized reference task in the area of
component-based software development. The task is to implement an expression
evaluator which can be incrementally extended with new cases without modifi-
cations of existing code.

Expression problem can easily be solved in Objective Caml using polymor-
phic variants [2]. Polymorphic variant types [1] are an extended version of reg-
ular ADTs which was introduced in Objective Caml starting from the version
3. In short, unlike regular ADTs, for which a certain constructor can belong to
exactly one type (in its scope), different polymorphic variant types can share
the same constructors. This, in particular, creates a possibility to operate with
types in a structural, not nominal, way. For example, polymorphic variants can
be subtyped, inherited and defined implicitly.

Here we demonstrate that our framework can provide more declarative im-
plementation for the same solution as in [2] (see Fig. 1).

type context = string — string
type mtype = context — (context, lam, lam, < >) a — lam

class virtual reducer = object(this) inherit [context, lam] Qlam

method virtual arg : mtype

method virtual subst_arg : mtype

method head : mtype = fun ¢ x = x.fx ¢
method c_Var _ x _ = X.X

method c_App ¢ s 1 m = match thisfhead ¢ 1 with
| Lam (x, 1’) — s.f c (subst c x (this#subst.arg c m) 1°)
| 17 —let 1’7’ = s.f ¢ 1’ in

App (1’7, thisfarg c m)
end

Fig. 2: Implementation of lambda reductions: base class

First, we declared two partial expression types (var and arith) with their
evaluators (var_eval and arith_eval); type arith is made polymorphic in ad-
vance to be more open — this is the feature of the original solution. Note that
these evaluators are polymorphic: in the case of type var we do not know the
type of evaluation result (synthesized attribute, ’v); in the case of type arith
we do not know the type of state (inherited attribute, 'b). This property en-
sures us that we did not introduce any artificial restrictions for these evaluators.
We then combine both partial types (via regular inheritance for polymorphic
variants) and their evaluators (via regular inheritance for classes). Now we can
unambiguously determine the types of state (string—int) and evaluation result
(int). The type expr is again open, so we have to “tie the knot” in the top-level
evaluator (eval).

In our implementation all “glue code”, needed in [2] to combine the evaluators
for the partial types, is generated by the framework and completely invisible on
the user level.

3.3 Lambda Calculus Reductions

For the final example we consider the implementation of different reduction
strategies for lambda calculus. As a reference we choose Peter Sestoft’s paper [10],
which provides a nice categorization of reduction order steps. Seven reduction
strategies are described using this categorization in terms of big-step operational
semantics; for three of them a reference ML-implementation is provided. Here
we present an implementation which literally follows Sestoft’s reasonings.

The type of lambda expressions we have been considering so far was actually
borrowed from the referenced paper; for this type we can declare the follow-
ing virtual class which abstracts any admissible reduction order according to
Sestoft’s categorization (see Fig. 2). Apart from inheriting from the abstract
transformer @lam we introduce the following supplementary methods:

— Method head reduces a lambda expression in a head position; we provide
here a default implementation which uses exactly the same reduction order

as being defined. However this is not always the case — some reduction
strategies (called “hybrid” in [10]) use different orders for this purpose.
— Method arg reduces a lambda expression in an argument position when
expression in corresponding head position was not reduced to abstraction.
— Method subst_arg reduces a lambda expression in an argument position
when expression in corresponding head position was reduced to abstraction.

Type context represents name-generating function needed to perform alpha-
conversions and plays role of the inherited attribute. Type mtype used as an
abbreviation for types of supplementary methods, which transform inherited at-
tribute (context) and augmented lambda expression (see Section 2) into lambda
expression. Finally we provide two generic implementations for reducing vari-
ables and applications. Variables never reduced; in application the expression in
a head position is reduced first with method head, then the result is inspected:
if it is an abstraction then its argument is reduced with subst_arg and then a
substitution is performed, otherwise its argument is reduced with arg. We did
not include in the listing the implementation of substitution function subst.

Given this base class we can define various traits of reduction orders (see
Fig. 3); to discriminate cases we explicitly follow [10].

class virtual reduce_under_abstractions = class virtual dont_reduce_under_abstractions =
object inherit reducer object inherit reducer
method c_Lam ¢ _ x 1 = Lam (x, 1l.fx c) method c_Lam _ s _ _ = s.X
end end
class virtual reduce_arguments = class virtual dont_reduce_arguments =
object inherit reducer object inherit reducer
method arg ¢ x = x.fx ¢ method arg _ x = Xx.X
end end

class virtual non_strict = class virtual strict =

object inherit reducer object inherit reducer
method subst_arg _ m = m.x method subst_arg ¢ m = m.fx ¢
end end

Fig. 3: Implementation of lambda reductions: reduction order traits

Having all these traits defined we finally can implement all reduction orders
by simply combining relevant traits via inheritance. Some interesting cases are
presented on Fig. 4. Note that this example demonstrates that object represen-
tation of transformations provides more then just componentization — in cases
of applicative order or hybrid applicative order we did not combine the reduction
transformations “from scratch” using the basic traits; we rather redefined some
traits in already completely implemented transformations”’.

In order to trace individual reductions during normalization a second imple-
mentation is sketched in the original paper. In that implementation lambda-term

7 In the latter case the order of inheritance clauses is important since each inheritance
(re)binds some methods.

under reduction is represented as a redex and its context — lambda-term with
a hole. Contexts represented by a functions with type lam —lam. A small set of
combinators is provided to manipulate context which is passed as auxiliary argu-
ment and modified as reduction point advances into the original term. Since this
modification is global it affects the implementation of each reduction strategy.
In our case, however, it is sufficient to modify only the implementations of
the base class and one reduction order trait. The definitions of all other traits
and individual reduction strategies can be left completely intact. The complete
self-contained implementation for both cases is included into Appendix.

class call_by_name = object class call_by_value = object
inherit dont_reduce_under_abstractions inherit dont_reduce_under_abstractions
inherit dont_reduce_arguments inherit reduce_arguments
inherit non_strict inherit strict

end end

let bn = transform(lam) (new call_by_name) let bv = transform(lam) (new call_by_value)

class applicative = object class hybrid_applicative = object
inherit call_by_value inherit applicative
inherit reduce_under_abstractions method head ¢ x = bv ¢ x.x
end end
let ao = transform(lam) (new applicative) let ha = transform(lam) (new hybrid_applicative)

Fig. 4: Implementation of lambda reductions: some of reduction orders

4 Related Works

Our approach was specifically designed for Objective Caml; it is interesting
to discuss other languages it can be implemented for. Such languages must at
least combine first-class functions, objects with inheritance and late binding and
algebraic datatypes. Scala® and Kotlin® can be considered as relevant exam-
ples. However in these languages object-oriented and functional features are not
orthogonal — first-class functions and ADTs are mimicked and projected into
object-oriented layer which leads to internal object-oriented data representation
and makes our approach superfluous (though possible). As another candidate
we can mention Haskell, in which object-oriented extension can be implemented
using typeclass-level metaprogramming [13].

Code reuse problem which we addressed can be dealt with in many various
ways. Datatype-generic programming [8] aimed at reuse of type-driven trans-
formations; we can mention “Scrap Your Boilerplate” [14-16] or “instant gener-
ics” [17] as examples. Some of their functionality (e.g., serialization, generic maps
and queries) definitely can be reproduced using our framework in terms of plu-
gins. In [4] a general constructive approach is provided for various classes of
type-driven transformations. From that perspective all transformations we are

8 http://www.scala-lang.org
9 http://kotlin.jetbrains.org

able to implement using our framework can be characterized as catamorphisms.
Recursive types considered as fixed points of (poly)functors; any catamorphism
can be represented via combination of type-specific traversal function (“fold”)
and transformation-specific function (“algebra”). There is a strong analogy be-
tween this approach and ours — “fold” corresponds to our type-indexed “trans-
form”, while “algebra” — to object-encoded transformer. The difference is that
our “transform” is non-recursive, concrete transformation functions are captured
and passed to object-encoded transformer as parameters. So, in our framework
the traversal order of data structure can be made specific not to its type, but
to a concrete transformation; so generally we can implement a superset of cata-
morphism class described in [4].

Another relevant approach which in fact motivated our work is suggested
in [6]. Attribute grammar-based domain-specific language is proposed for de-
scribing catamorphisms in a declarative form. This domain-specific language
is implemented as a preprocessor for Haskell. A specifications for different at-
tributes and their evaluation rules can incrementally be introduced, modified
and combined yielding transformation which performs all these evaluation pro-
vided these descriptions are consistent with each other. The consistency property
is statically checked using advanced type-system encoding including type arith-
metics.

The direct reuse of the aforementioned approach is impossible due to the
differences in type systems between Haskell and Objective Caml (Haskell im-
plementation utilizes heterogeneous collections and, hence, requires type arith-
metic). Moreover, the explicit encoding of attributes and their evaluation rules
can compromise the idea of code reuse since we cannot have different evaluation
rules for the same attribute (as we actually had two different show functions for
the same type in Section 1).

Another approach to code reuse is concentrated on composing software from
separately developed reusable components. We already mentioned “Expression
problem” [12] as a reference task in this area. “Expression problem” can be solved
in a number of languages including Haskell [9], Java [18] and Objective Caml [2].
As we demonstrated, our framework is compatible with the solution for Objec-
tive Caml; moreover it allows even more code reuse since with our framework
it is possible to modify the behavior of completely assembled transformation
(which is impossible, for example, in [9] due to uniqueness of class membership
instantiation for a given type).

From the technical point of view our approach resembles MapGenerator'® and
FoldGenerator'! which are shipped with camlp4. These tools provide syntax ex-
tensions which generate “map” and “fold” transformations in a form of a single
class per a cluster of mutually-recursive type definitions. Each method of this
class represents the transformation for each type of the cluster. This represen-
tation indeed allows to modify the behavior of transformation by inheritance.

10 http://brion.inria.fr/gallium/index.php/Camlp4MapGenerator
" http://brion.inria.fr/gallium/index.php/Camlp4FoldGenerator

There are, however, some differences, which make that approach less general
then ours:

1. Method-per-type representation does not eliminate the need for pattern-
matching. Extending transformation method one still needs to manually
match against “interesting” constructors which we consider a boilerplate.

2. Similarly, the transformation for a union of polymorphic variant types can
not be constructed by inheritance from the transformations for its counter-
parts — some “glue” code is needed.

3. There are many other interesting transformations which are left overboard
(e.g. “show”, “compare” etc.). While some of them technically can be seen
as specializations of fold or map in fact no code reuse can be achieved by
utilizing Fold/MapGenerator since the body of each generated method has to
be completely reimplemented. In our framework these transformation can
be implemented in form of plugins with short and simple implementation.

Another “close relative” of our framework is “deriving” syntax extension
and library'?. Like our plugin system, “deriving” allows to generate specific
functionality from type definitions, and the assortment of traits can potentially
be extended by the end-user [7]. However this framework does not utilize object-
encoding which makes the generated traits less flexible.

Conclusions

We presented a generic programming framework for Objective Caml which
is based on the notion of object-encoded transformations. Proposed approach
facilitates even more code reuse in comparison with conventional tools such as
classes/objects and polymorphic variants since it allows to combine best prac-
tices from both functional and object-oriented programming. The implementa-
tion consists of a syntax extension which operates on slightly augmented descrip-
tions of Objective Caml types and very small runtime library. Additionally the
framework itself can be parameterized by mean of plugins which provide func-
tionality to generate custom type-driven transformations conforming the generic
framework interface. We believe that a wide range of transformations for regular
ADTs and polymorphic variant types can be expressed using approach in ques-
tion. Finally, our approach gives a good example of object-oriented programming
in terms of Objective Caml.

Recent development of Objective Caml introduced some new features such
as GADT, open types and extensible functions. An improvement of our imple-
mentation to support these features can be considered as future work as well
as elimination of “regularity” restriction. As another important problem we can
mention performance evaluation of generic vs hand-written transformations and
reducing genericity-imposed overhead.

'2 https://code.google.com/p/deriving

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

. Jacques Garrigue. Programming with Polymorphic Variants. ICFP Workshop on

ML, 1998.

Jacques Garrigue. Code Reuse Through Polymorphic Variants. FOSE-2000.
Didier Rémy. Using, Understanding, and Unraveling the OCaml Language. Applied
Semantics. Advanced Lectures. LNCS 2395, 2002.

Erik Meijer, Maarten Fokkinga, Ross Paterson. Functional Programming with Ba-
nanas, Lenses, Envelopes and Barbed Wire. 5th ACM Conference on Functional
Programming Languages and Computer Architecture, 1991.

Donald E. Knuth. Semantics of Context-Free Languages. Mathematical Systems
Theory, Vol. 2, No. 2, 1967.

Marcos Viera, S. Doaitse Swierstra, Wouter Swierstra. Attribute Grammars Fly
First-Class: How to do Aspect Oriented Programming in Haskell. ICFP-2009.
Jeremy Yallop. Practical Generic Programming in OCaml. ICFP Workshop on ML,
2007.

Jeremy Gibbons. Datatype-generic Programming // Spring School on Datatype-
Generic Programming. LNCS 4719, 2006.

Wouter Swierstra. Data Types a la Carte // Journal of Functional Programming,
Vol. 18, No. 4, 2008.

Peter Sestoft. Demonstrating Lambda Calculus Reductions // The Essence of
Computations, LNCS Vol. 2566, 2002.

Graham Hutton. A Tutorial on the Universality and Expressiveness of fold //
Journal of Functional Programming, Vol. 9, No. 4, 1999.

Philip Wadler, et al. The Expression Problem. Discussion on the Java-Genericity
mailing list, December 1998.

Oleg Kiseliov, Ralf Lammel. Haskell’'s Overlooked Object System [/
arXiv:cs/0509027, 2005.

Ralf Lammel, Simon Peyton Jones. Scrap Your Boilerplate: A Practical Design
Pattern for Generic Programming. Workshop on Types in Language Design and
Implementation, 2003.

Ralf Lammel, Simon Peyton Jones. Scrap More Boilerplate: Reflection, Zips, and
Generalised Casts. ICFP-2004.

Ralf Ldmmel, Simon Peyton Jones. Scrap Your Boilerplate with Class: Extensible
Generic Functions. ICFP-2005.

Manuel M. T Chakravarty, Gabriel C. Ditu, Roman Leshchinskiy. Instant Generics:
Fast and Easy, 2009.

Bruno C. d. S. Oliveira, William R. Cook. Extensibility for the Masses: Practical
Extensibility with Object Algebras // ECOOP, 2012.

Appendix: Lambda Calculus Reduction Orders

(* Opening runtime module to avoid explicit qualification *)
open GT

(* Set/map of strings *)
module S = Set.Make (String)
module M = Map.Make (String)

(* Name generator for alpha-conversion *)
let generator s =

let s = ref s in

let rec gen x =

~ nom

let n =x in

if S.mem n !s

then gen n

else (s := S.add n !s; n)
in gen

(* Helper class for alpha-conversion; parameterized
by name-generating function ‘‘g’’ and a set of ‘‘prohibited’’
free variables ‘‘fus’’
*)
class substitutor gen fvs =
object (this)
val s = (M.empty : string M.t)
method subst x = try M.find x s with Not_found — x
method rename x = if S.mem x fvs
then let x’ = gen x in x’, {< s = M.add x x’ s >}
else x, {< >}

end

(* Type of lambda exzpression; enables ‘‘show’’ and ‘‘foldl’’ transformations *)
Q@type lam =

| Var of string

| App of lam % lam

| Lam of string * lam with show, foldl

(* “‘show’’ function *)
let show = transform(lam) (new @show[lam]) ()

(* Transformation class to collect wariables; reuses ‘‘foldl’’ *)
class var = object inherit [S.t] @foldl[lam]

method c_Var s _ x = S.add x s
end

(* Function to collect wariable names *)
let vars = transform(lam) (new var) S.empty

(* Context ——— function to generate ‘‘fresh’’ mames *)
let context 1 = generator (vars 1)

(* Transformation class to collect free wvariables; reuses “uar’’ *)
let fv = transform(lam)
object inherit var
method c_Lam s _ x 1 = S.union s (S.remove x (1.fx S.empty))
end S.empty

(* Substitution function (gemeric as well) *)
let subst g x m = transform(lam)
object inherit [substitutor, lam] @lam
method c_Var s _ y =
if y = x then m else Var (s#subst y)
method c_Lam s z y 1 =
if y = x then z.x
else let y’, s’ = sfrename y in Lam (y’, 1.fx s’)
method c_App s _ 1 m = App (1.fx s, m.fx s)

end (new substitutor g (fv m))

(* Module type to abstract base class for implementing reduction orders *)
module type Reducer —
sig

(* Abstract type for inherited attribute *)
type context
(* Shortcut for augmented type of lambda-exzpression *)

type aug = (context, lam, lam, < >) a
(* Shortcut for type of supplementary methods *)
type mtype = context — aug — lam

(* Abstract function to provide ‘‘default’’ inherited attribute *)
val default : lam — context

(* Template base class for reduction trnsformation *)
class virtual reducer
object inherit [context, lam] @lam

method virtual arg : mtype

method virtual subst_arg : mtype

method head : mtype

method c_Var : context — aug — string — lam

method c_App : context — aug — aug — aug — lam
end

(* Template class for the only trait which is sensitive to
the ‘‘context’’ type
*)
class virtual reduce_under_abstractions
object inherit reducer
method c_Lam : context — aug — string — aug — lam
end

end

(* Functor to implement concrete reduction orders *)
module Reductions (R : Reducer) =
struct
(* Opening R to avoid qualifications *)
open R

(* Top-level reduction function: applies reduction
order ‘‘r’’ to lambda-term ‘‘1°’

*)

let reduce r 1 = r (default 1) 1

(* Bastic reduction order traits *)

class virtual dont_reduce_under_abstractions =
object inherit reducer
method c_Lam _ s _ _ = s.X

end

class virtual reduce_arguments =
object inherit reducer
method arg ¢ x = x.fx ¢
end

class virtual dont_reduce_arguments =
object inherit reducer
method arg _ x = x.x
end

class virtual non_strict =
object inherit reducer
method subst_arg _ m = m.x
end

class virtual strict =
object inherit reducer
method subst_arg ¢ m = m.fx ¢
end

(* Reduction orders *)

class call_by_name = object
inherit dont_reduce_under_abstractions
inherit dont_reduce_arguments
inherit non_strict

end

let bn = transform(lam) (new call_by_name)

class normal = object
inherit reduce_under_abstractions
inherit reduce_arguments
inherit non_strict
method head ¢ x = bn ¢ x.x
end
let nor = transform(lam) (new normal)

class call_by_value = object
inherit dont_reduce_under_abstractions
inherit reduce_arguments
inherit strict

end

let bv = transform(lam) (new call_by_value)

class applicative = object
inherit call_by_value
inherit reduce_under_abstractions
end
let ao = transform(lam) (new applicative)

class hybrid_applicative = object
inherit applicative
method head ¢ x = bv ¢ x.x
end
let ha = transform(lam) (new hybrid_applicative)

class head_spine = object

inherit call_by_name

inherit reduce_under_abstractions
end

let he = transform(lam) (new head_spine)

class hybrid_normal = object
inherit normal
method head ¢ x = he ¢ x.x
end
let hn = transform(lam) (new hybrid_normal)

(* Top-level definitions *)
let sample r 1 =
Printf.printf "%s —— %s\n” (show 1) (show (r 1))

let main () =
let run n r =
Printf.printf ”\n s n\n” n;
List.iter (sample r) |
Lam (77X77 s App (La.\'ﬂ (77y77 , Var 17y77) s Var 17Z77));

App (Lam ("x”, App (Lam ("y”, Var 7y”), Var 7z”)), Var "y”)

App (Var ”x”, App (Lam (”x”, Var ”x”), Var "y”));
App (Lam (”x”, App (Var ”
App (Lam ("x”, App (Var

5

x”, Var ”y”)), App (Lam (”x”,
y”, Var "x”)), App (Lam ("x”,

”»

Var
Var

HXH)’ Var uyu)
”X”), Var 77y71)

).
).

3

3

in

run ”Call-by—name” (reduce bn);
run ”"Normal Order” (reduce nor);
run ”Call-by—value” (reduce bv);
run ”Applicative” (reduce ao);
run "Hybrid Applicative” (reduce ha);
run "Head Spine” (reduce he);

run "Hybrid Normal Order” (reduce hn)
end

(* Top-level definition *)

let _ =
(* Simple case --- reduction with no context tracing *)
let module Simple = Reductions (

struct
(* Inherited attribute: name-generation function *)
type context = string — string

type aug = (context, lam, lam, < >) a
type mtype = context — aug — lam

let default = context

(* Base reducer for the simple case *)
class virtual reducer =
object(this) inherit [context, lam| @lam

method virtual arg : mtype

method virtual subst_arg : mtype

method head : mtype = fun ¢ x —+x.fx ¢
method c_Var _ x = X.X

method c_App ¢ s 1 m =
match this#head ¢ 1 with
| Lam (x, 1’) — s.f ¢ (subst ¢ x (this#subst_arg c m) 1)
| 1’ Slet 17’ =s.f ¢ 1’ in
App (1’’, thisffarg c m)
end

(* Context-type-sensitive trait for the simple case *)
class virtual reduce_under_abstractions =
object inherit reducer
method c_Lam ¢ _ x 1 = Lam (x, 1.fx c)
end
end
)
in
(* Advanced case with context reconstruction; the definitions
of all but one trait and all reduction orders completely reused
*)
let module WithContext = Reductions (
struct
(* Inherited attribute: name-generating function and term with a hole *)
type context = (string — string) * (lam — lam)

type aug = (context, lam, lam, < >) a
type mtype = context — aug — lam

(* Combinators to manipulate terms with holes *)
let (@0) f g x =1 (gx)

let id X =x

let abst x e = Lam (x, e)

let appl el e2 = App (el, e2)

let appr e2 el = App (el, e2)

let default 1 = (context 1, id)

(* Base reducer with context reconstruction *)
class virtual reducer =
object(this) inherit [context, lam] @lam
method virtual arg : mtype

method virtual subst_arg : mtype
method head : mtype = fun ¢ x -+ x.fx ¢
method c_Var _ x _ = x.X
method c_App ((g, c) as i) s 1 m =
match this#head (g, ¢ @@ appl 1.x) 1 with
| Lam (x, 1) —s.f i (subst g x (thisfsubst_arg (g, c @@ appr 1’) m) 1)
| 1 —let 1’7 =s.f (g, ¢ @ appl 1.x) 1’ in
App (1’7, thisffarg (g, ¢ @@ appr 1’’) m)
end

(* Context-type-sensitive trait with context reconstruction *)
class virtual reduce_under_abstractions =

object inherit reducer
method c_Lam (g, c¢) _ x 1 = Lam (x, 1.fx (g, c @@ abst x))

end

end
)
in
(* Running both cases *)
Simple.main ();
WithContext.main ()

