Code Reuse with Object-Encoded Transformers

Dmitry Boulytchev

Software Engineering Chair
Saint-Petersburg State University
dboulytchev@math.spbu.ru

TFP-2014
26-28 May 2014
Soesterberg, The Netherlands

21

ADT vs. Object Representation

ADT

Object Representation |

Single type definition with multi-
ple constructors

Multiple class definitions

Adding new transformation is
easy

Adding new transformation is te-
dious

Adding new constructor is te-
dious

Adding new class is (rather) easy

Joining types is tough

Joining class hierarchies is te-
dious

Modifying existing transforma-
tion is tough

Modifying existing transforma-
tion is easy

21

Polymorphic Variants in OCaml
“The Expression Problem” [Wadler, 1998]
“Code Reuse Through Polymorphic Variants” [Garrigue, 2002]

type var = [‘Var of string]

let evalvar s (‘Var n) = s n

type 'a bin = [‘Add of 'a * 'a | ‘Mul of 'a * ’a]
let evalBin eval = function

| ‘Add (x, y) —eval x + eval y

| ‘Mul (x, y)—eval x % eval y

"a bin]

type 'a expr = [var

let evalExpr eval s = function
| #var as e —evalvVar s e
| #bin as e —evalBin eval e

let rec eval s e = evalExpr (eval s) s e

Local Modification of Existing Transformation

Artificial example: counting number of leaves in a tree:

type tree = Leaf of string | Node of tree # tree

let rec leaves = function
| Leaf _—1
| Node (1, r) —leaves 1 + leaves r

21

Local Modification of Existing Transformation

Artificial example: counting number of leaves in a tree:

type tree = Leaf of string | Node of tree # tree

let rec leaves = function
| Leaf _—1

| Node (1, r) —leaves 1 + leaves r

Modification: do not count “empty leaves”

Local Modification of Existing Transformation

Artificial example: counting number of leaves in a tree:

type tree = Leaf of string | Node of tree # tree

let rec leaves = function
| Leaf _—1
| Node (1, r) —leaves 1 + leaves r

Modification: do not count “empty leaves”

let non_empty_leaves = function
| Leaf ™ —0
| t — leaves t

21

Local Modification of Existing Transformation

Artificial example: counting number of leaves in a tree:

type tree = Leaf of string | Node of tree # tree

let rec leaves = function
| Leaf _—1
| Node (1, r) —leaves 1 + leaves r

Modification: do not count “empty leaves”

let non_empty_leaves = function
| Leaf ™ —0
| t — leaves t

In OO: visitors.

21

Object-Encoded Transformers

@ Data representation is left untouched.

@ Transformation is represented as object with method per each
constructor.

@ Traversal function to match against constructors and call
appropriate methods.

21

Object-Encoded Transformers

Object-encoded transformer for counting leaves:

class leaves = object
method c_leaf 1 =1
method c_Node 1 r = l+4r
end

21

Object-Encoded Transformers

Object-encoded transformer for counting leaves:

class leaves = object
method c_leaf 1 =1
method c_Node 1 r
end

14r

Traversal function:

let rec transform t = function
| Leaf 1— t#c_Leaf 1

| Node (1, r)— t#c_Node (transform t 1) (transform t r)

21

Object-Encoded Transformers

Object-encoded transformer for counting leaves:

class leaves = object
method c_leaf 1 =1
method c_Node 1 r = l+4r
end

Traversal function:

let rec transform t = function
| Leaf 1— t#c_Leaf 1
| Node (1, r)— t#c_Node (transform t 1) (transform t r)

Example:

let leaves = transform (new leaves)
let non_empty_leaves = transform
object inherit leaves as super

method c_leaf 1 =if 1 = ”” then 0 else super#c_Leaf 1
end

More Elaborated Version

@ Transformation class: catamorphisms (folds/attribute
grammar-defined transformations).

@ One traversal function per type.

@ Arguments of per-constructor methods are augmented with
transformation functions.

@ One abstract transformer (virtual class) to inherit from.

@ Support for polymorphic ADT and polymorphic variant types.

@ Syntax extension to generate all boilerplate code from type
definitions.

Example: “show” and “eval”

@ type expr = Var of string | Add of expr * expr | Const of int

class eval = object inherit [string— int, int] @expr

method c_Const _ _ n=n

method c. Add s _ 1 r= 1l.fx s + r.fx s
method c_Var s _ x =38 X

end

class show = object inherit [unit, string] @expr

method c_Const _ _ n = string_of_int n
method c_ Add s _ 1 r="Add ("~ 1l.fx s " 7,7 " r.fx s "~ ")
method c_Var _ _ x = "Var ” " x

end

let eval = transform(expr) (new eval)
let show = transform(expr) (new show) ()

21

Example: Expression Problem

@ type var = [‘Var of string]

class ['v] var_eval = object inherit [string— ’v,
method c_Var s _ x = s x

end

v] @var

@type 'a bin = [‘Add of ’'a * 'a | ‘Mul of 'a x 'a]
class [’'a, 'b] bin_eval = object inherit [’a, int, ’b, int] @bin
method ¢ Add s _ 1 r= 1l.fx s + r.fx s

method ¢ Mul s _ 1 r
end

l.fx s * r.fx s

@type 'a expr = [var | 'a arith]

class [’'a] expr_eval = object
inherit [’a, int, string=int, int] @expr
inherit [int] var_eval
inherit [’a, string— int] bin_eval

end

Custom Traits/Plugins

@ User-defined generators for concrete transformers.

@ Dynamically loaded during syntax extension phase.

@ Easy to implement for simple boilerplate transformations.
@ Examples: show, map, fold.

10/21

Custom Traits/Plugins

@ User-defined generators for concrete transformers.

@ Dynamically loaded during syntax extension phase.

@ Easy to implement for simple boilerplate transformations.
@ Examples: show, map, fold.

@ type tree = Leaf of string | Node of tree x tree with foldl

let leaves = transform(tree)
object inherit [int] @fold[tree]
method c_leaf a _ _ = a+l
end 0

let non_empty_leaves = transform(tree)
object inherit [int] Q@fold[tree]
method c_leaf a _ 1 =if 1 = ”” then a else a+l
end 0

10/21

Custom Traits/Plugins

Q type expr = Var of string
| Add of expr *x expr

| Const of int with map

class simplify = object inherit (@map[expr]
method c_Add _ _ 1 r =match 1.fx () , r.fx () with

| Add (Const x, y), Add (Const z, t) —Add (Const (x+z), Add (y, t))
| Add (Const x, y), Const z—Add (Const (x+z), y)
| Const x, Add (Const y, z)—Add (Const (x+y), z)

| Const x, Const y — Const (x+y)
| x , (Const _asy) —Add (y, x)
| x .Y —Add (x, y)

end

11/21

Example: Lambda Reductions

“Demonstrating Lambda Calculus Reduction” [Sestoft, 2002):

categorization of steps;
seven different reduction orders;
big-step operational semantics;

one-to-one correspondence between semantic specification and
implementation code;

seven similarly looking pieces of code (actually, three).

12/21

Example: Lambdas, Variables, Free Variables

Q type lam =
| Var of string
| App of lam * lam

| Lam of string * lam with show, foldl

13/21

Example: Lambdas, Variables, Free Variables

Q type lam =
| Var of string
| App of lam * lam

| Lam of string * lam with show, foldl

class var = object inherit [S.t] @foldl[lam]
method ¢ _Var s _ x = S.add x s
end

let vars = transform(lam) (new var) S.empty

13/21

Example: Lambdas, Variables, Free Variables

Q type lam =
| Var of string
| App of lam * lam

| Lam of string * lam with show, foldl

class var = object inherit [S.t] @foldl[lam]

method ¢ _Var s _ x = S.add x s
end

let vars = transform(lam) (new var) S.empty

let fv = transform(lam)
object inherit var
method c_Lam s _ x 1 = S.union s (S.remove x (1.fx S.empty))
end S.empty

13/21

Example: Object-Encoded Reducer

class virtual reducer = object inherit [unit, lam] @lam
method virtual arg : (unit, lam, lam, < >) a— lam
method head : (unit, lam, lam, < >) a—lam = fun x — x.fx ()
method ¢ Var _ x _ = 7:x

end

14/21

Example: Object-Encoded Reducer

class virtual reducer = object inherit [unit, lam] @lam
method virtual arg : (unit, lam, lam, < >) a— lam
method head : (unit, lam, lam, < >) a—lam = fun x — x.fx ()
method ¢ Var _ x _ = 7:x

end

let reduce r = transform(lam) r ()

14/21

Example: Dealing With Abstractions and Arguments

15/21

Example: Dealing With Abstractions and Arguments
class virtual reduce_under_abstractions =
object inherit reducer
method c_Lam _ _ x 1 = Lam (x, 1.fx ())
end

class virtual dont_reduce_under_abstractions =
object inherit reducer
method c_ lam _ s _ _ = ":s
end

15/21

Example: Dealing With Abstractions and Arguments
class virtual reduce_under_abstractions =
object inherit reducer
method c_Lam _ _ x 1 = Lam (x, 1.fx ())
end

class virtual dont_reduce_under_abstractions =
object inherit reducer
method c_ lam _ s _ _ = ":s
end

class virtual reduce_arguments =
object inherit reducer
method arg x = x.fx ()
end

class virtual dont_reduce_arguments =
object inherit reducer
method arg x = ":x
end
15/21

Example: Strict vs. Non-strict

16/21

Example: Strict vs. Non-strict

class virtual strict g =
object (this) inherit reducer
method c_App _ s 1 m=
match this#head 1 with
| Lam (x, 1') = s.f () (subst g x (m.fx ()) 17)
| 1’ —let 1"’ = s.f () 1’ in
App (1’’, this#arg m)
end

16/21

Example: Strict vs. Non-strict

class virtual strict g =
object (this) inherit reducer
method c_App _ s 1 m=
match this#head 1 with
| Lam (x, 1') = s.f () (subst g x (m.fx ()) 17)
| 1’ —let 1"’ = s.f () 1’ in
App (1’’, this#arg m)
end

class virtual non_strict g =
object (this) inherit reducer
method c_App _ s 1 m=
match this#head 1 with
| Lam (x, 1’) = s.f () (subst g x ":m 1’)
| 1’ —let 1" = s.f () 1’ in
App (1’’, this#arg m)
end

16/21

Example: Building Reduction Orders

17/21

Example: Building Reduction Orders

Call-by-name:

class bn g = cbject
inherit dont_reduce_under_abstractions
inherit dont_reduce_arguments
inherit non_strict g

end

let bn 1 = reduce (new bn (context 1)) 1

17/21

Example: Building Reduction Orders

Call-by-name:

class bn g = cbject
inherit dont_reduce_under_abstractions
inherit dont_reduce_arguments
inherit non_strict g

end

let bn 1 = reduce (new bn (context 1)) 1

Call-by-value:

class bv g = object
inherit dont_reduce_under_abstractions
inherit reduce_arguments
inherit strict g

end

let bv 1 = reduce (new bv (context 1)) 1

17/21

Examlpe: Building Reduction Orders

18/21

Examlpe: Building Reduction Orders

Normal order:

class nor g = object
inherit reduce_under_abstractions
inherit reduce_arguments
inherit non_strict g
method head x =bn ":x
end

let nor 1 = reduce (new nor (context 1)) 1

18/21

Examlpe: Building Reduction Orders

Normal order:

class nor g = object
inherit reduce_under_abstractions
inherit reduce_arguments
inherit non_strict g
method head x =bn ":x
end

let nor 1 = reduce (new nor (context 1)) 1
Applicative order:
class ao c = object
inherit bv c
inherit reduce_under_abstractions
end

let ao 1 = reduce (new ao (context 1)) 1

18/21

Examlpe: Building Reduction Orders

19/21

Examlpe: Building Reduction Orders
Hybrid Applicative/Head Spine/Hybrid Normal Orders:

class ha ¢ = dbject
inherit ao ¢
method head x = bv ":x
end
let ha 1 = reduce (new ha (context 1)) 1

class he c = object

inherit bn ¢

inherit reduce_under_abstractions
end
let he 1 = reduce (new he (context 1)) 1

class hn ¢ = object
inherit nor c
method head x = he ":x
end
let hn 1 = reduce (new hn (context 1)) 1

19/21

Conclusions

By now:
@ lighweight datatype-generic framework;

@ one per-type traversal function, one abstract object-encoded
transformer (generated automatically);

@ a number of plugins to generate concrete transformers for some
widespread transformations (show, map, fold, eq, compare,...);

@ an ability to modify existing transformations;

@ an ability to “join” transformations for “joined” types.
Future work:

@ find more applications;

@ evaluate and address performance issues;

@ implement more plugins (with contexts?).

20/21

Thank you!

@ Source code:
https://code.google.com/p/generic-transformers

21/21

