An Empirical Study of Retargetable Compilers

Dmitry Boulytchev and Dmitry Lomov

{db,dsl}@tepkom.ru
St.-Petersburg State University, Faculty of Mathematics and Mechanics
Department of System Programming
198504, Russia, St.Petersburg, Bibliotechnaya sq., 2
Tel./Fax: +7(812)428-71-09

Abstract. The paper describes evaluation results of some modern re-
targetable codegeneration frameworks. The evaluation was performed to
estimate applicability of these approaches in hardware-software codesign
domain so ease of retargetability and efficiency of generated code were
main criteria. Evaluated tools were selected from National Compiler In-
frastructure (NCI) project.

1 Introduction

Hardware-software codesign is modern technique aimed to obtain high produc-
tivity of real-time and embedded systems. Key feature of this approach is simul-
taneous development of the program and the target processor or specialization
of parameterized processor architecture to match target software application.

Generally, codesign implies iterative development. Each iteration consists of
building new hardware description based on previous profiling and efficiency
estimations, building (somehow) compiler, debugger, simulator, compiling and
possible debugging target application, profiling and estimation of profit/loss. So
building set of retargetable tools is basic and very frequent procedure.

Despite a number of retargetability techniques building of compiler still re-
mains matter of art. Since main codegeneration approaches are investigated well
the contiguous tasks (supporting of calling and linking conventions, building de-
bugger and profiler etc.) should be solved (semi)-manually. The most crucial
problem of building machine—dependent code optimizer also remains open.

Here we describe most recent retargetable codegeneration frameworks that
look most preferable for purposes under considerations and briefly present the
results of their evaluation (see [4] for details).

2 Retargetability Issues

Compiler’s retargetability is usually understood as its ability to be re-targeted
to another machine platform “automatically” or ”nearly automatically”. This
implies building of codegenerator from some description. Ideally such a descrip-
tion should be extracted from description of actual hardware but as for now



there is well-known semantic gap between hardware description and codegener-
ator description. So now transition from hardware to codegenerator is mainly
proceeds as follows: first verbal instruction set description is produced, then
codegenerator description is written from it.

Starting from the most fundamental results in code generation area [1, 3] main
retargetability technique stays tree pattern matching and dynamic programming.
A number of ways to exploit this idea are investigated [6, 7, 13, 24, 25]; also there
are a number of compilers based on them. These methods often considered as
means of instruction selection so register allocation and instruction scheduling
should be done separately.

Similar attribute-grammar based method described in [14]. Most of heuristic
codegenerators use this notion.

Quite different approach suitable for VLIW processors codegeneration is sug-
gested in [15, 20]. This approach is based on covering of so—called split-node DAG
that reflects possibilities of parallel execution of DAG nodes with primitive in-
structions — so instruction selection, resigter allocation and scheduling are all
performed simultaneously. To provide feasible schedule binate covering method
is used [17,20]. Unfortunally there is no compiler built on this technology so
there is nothing to evaluate yet.

Finally there are some novel approaches to retargetable codegeneration in-
cluding automatic building of codegenerator from architecture or instruction set
description [19,23,31]. However tools presented there are either far from real
industrial compilers or not accessible for evaluation.

3 Criteria and Methods

The basic factors to be taken into account are, of course, quality of generated
code and ease of retargetability.

To assess quality of generated code, we compare the performance of several
benchmarks on architectures that the tools being evaluated are already ported.
We use Intel Pentium IIT and Sun SPARC processors for this purpose.

We used benchmarks developed by Standard Performance Evaluation Corpo-
ration (SPEC)!. This is an industry-standard set of benchmarks to assess quality
of computer systems. However SPEC was not initially designed to be used as
tool for compilers’ performance comparison. For example it contains benchmarks
written in different programming languages (Fortran, C++, C) and moreover
utilized some specific compiler-dependent features. So we changed some SPEC
benchmarks to make them appropriate for other compilers being evaluated.

Then it turned out that some of compilers were unable to compile some
SPEC tests correctly either at whole or with some optimizations turned on. So
we provide some auxilliary narrow set of benchmarks beyond basic SPEC set.
These benchmarks are:

— bzip2: BWT-based data compression utility, by Julian Seward

! http://www.spec.org



— gzip: LZW-based data compressor, by Jean-Loup Gailly
— ranking: Implementation of Symbol Ranking text compression algorithm, by
Dmitry Lomov

All of these benchmarks were compiled by all of evaluated tools with major
optimizations turned on.

In according to reasons mentioned above we evaluated all tools in according
with measures listed below:

— Soundness: describes how close evaluated tool is to real industry compiler.
We express soundness in percents of all passed SPEC benchmarks

— Selected Performance: describes peak compiler performance. To evaluate se-
lected performance we compared compilers on narrow set of benchmarks.
We express selected performance using formula K/absolute running time,
where K - some specially selected constant

— Quwerall Performance: describes performance evaluated on full SPEC suite.
In addition we use non-retargetable platform-native compiler for comparison
purposes. Overall performance expressed in percents of best performance
among all tools

Informally speaking selected performance reflects some expectations about
compiler’s performance after all bugs eliminated. Note that this estimation is
rather optimistic because fast code can probably be generated due to inaccurate
analysis during optimizations.

To assess ease of retargetability, each tool evaluated has been ported to a
“toy” instruction set, designed for a specific algorithm. Symbol Ranking was
choosen as target algorithm. This estimation is also optimistic because it is
much simpler to port compiler for special fixed application.

4 Evaluated tools

We selected compilers from National Compiler Infrastructure (NCI)* project.
The project was started under support of DARPA and NSF by major USA
Universities (Harvard, Princeton, Stanford, Rice etc.)

On the other hand we have chosen legendary gcc compiler [30] as most
authoritative industrial optimizing C compiler.

NCI project is aimed at developing interoperable framework for constructing
retargetable, optimizing compilers. Combination of these two qualities — retar-
getability and optimization — is crucial for hardware-software codesign. Without
good retargetability, co-design cycle becomes unbearably long; without optimiza-
tion, the whole idea of co-design is compromised, as non-optimizing compiler does
not employ features of the target architecture to its best. NCI project compilers
represent current state-of-the-art in developing easily retargetable, optimizing
compilers.

Currently three C compilers are available from NCI: SUIF/MachSUIF, lcc
and VP0-based compiler. We evaluated all of them.

% http://www.cs.virginia.edu/nci/



SUIF and MachSUIF. SUIF (Stanford University Intermediate Format) [18]
and MachSUIF (Machine SUIF) [?,29] are developed in Stanford and Har-
vard Universities correspondingly. Both systems are parts of NCI project.
Unfortunately SUIF/MachSUIF compiler is not ported to Sun SPARC so it
is not evaluated at that platform.

VPO-based compiler. VPO (Very Portable Optimizer) is a part of Zephyr®
project. The project is in turn part of NCIL.

Ice compiler. lcc compiler was developed in Princeton University, USA, since
1991 and later was also involved into NCI project [9-12].

5 Results and Conclusions

Unfortunately at the time of writing on Sun SPARC platform only selected
performance evaluation was completed. The result of the evaluation is shown at
figure 1. The other results are to appear at http://oops.tepkom.ru/eval.html in
near future.

50
45
m @ gee -noopt
35 B gec -opt
30
25 Olcc
20 O vpo -noopt
15
10 B vpo -opt

s =

0

Fig. 1. Selected Performance on Sun SPARC, 1000/absolute time

Results of soudness evaluation on Intel Pentium III platform are shown at
figure 2. We can conclude that neither SUIF nor VPO turned out to be ready-to-
use compilers — during the evaluation we encontered lots of bugs that had to
be fixed.

Selected and overall performance evaluation results at Intel Pentuim IIT are
shown at figure 3 and figure 4 correspondingly. We have choosen Intel C/C++
compiler (icc) as non-retargetable platform-native compiler.

% http://www.cs.virginia.edu/zephyr



100

90 EHgcc -noopt

80 Egcc-opt

70 Olcc

60 Ovpe -noopt

50 HEvpo -opt

40 W SUIF

30 Oicc -opt

20 Micc -ipo

10

0
Fig. 2. Soundness on Intel Pentium III, % of passed benchmarks

40
35 @ gce -noopt
30 M gcc -opt
25 Olec
20 7 O vpo -noopt
157 H vpo -opt
107 m SUIF

5

0

Fig. 3. Selected Performance on Intel Pentium III, 1000/absolute time

100

90 O gcc -noopt

80 B gcc -opt

70 Olcc

60 O vpo -noopt

50 H vpo -opt

40 7 B SUIF

30 A dicc -opt

20 M icc -ipo

10

0 —

Fig. 4. Overall Performance on Intel Pentium ITI, % of best performance



Our benchmarks show that SUTF/MachSUIF compiler is competely unapplica-
ble for producing efficient code. This is largerly due to inappropriate instruction
selection techniques and lack of optimizations.

Regarding the efficiency of generated code, we saw that generally gcc with op-
timizations on beats all the other retargetable tools. If optimizations are turned
off in all tools, 1cc shows best performance. VPO has shown quite irregular per-
formance — on some benchmarks it produces the best code of all, while on others
it lose even to non-optimizing lcc compiler.

However as a result of auxilliary testing we discovered “contradictionary”
benchmarks that are not fit into conclusion given above:

1. lcc beats all retargetable tools on Objective Caml 4 garbage collector im-
plementation (30% better than gcc) on Intel Pentium ITT

2. VPO beats all retargetable tools on certain implementation of Symbol Rank-
ing text compression algorithm (5 ¢imes better than gcc) on Sun SPARC

Finally we can see that platform-specific Intel compiler outperforms all re-
targetable tools.

As the ease of retargeting, lcc turned out to be the best of all considered
tools. gcc and VPO on the whole show same level of retargetability, although
gcc is much better documented. SUIF/MachSUTIF is less retargetable because it
is necessary to rewrite codegenerator manually to retarget it.

We conclude that none of the methods considered allows to build a retar-
getable code generator that can directly be utilized for co-design purposes.

We also see the importance of instruction selection — lcc, a non-optimizing
compiler with good instruction selection algorithm based on BURS [3,7,13, 24,
25] shows quite good performance.

However, good instruction selection is not enough for obtaining optimized
code. VPO outperforms lcc on majority of tests.

This research shows the directions for further development in co—design and
code generation area. Easily retargetable, optimizing compilers are vital for
hardware-software co-design, but we see that techniques for building them are
yet to be created.

Acknowledgments

We would like to thank Mikhail Smirnov and Eugene Vigdorchik — our col-
leagues in OOPS team of System Programming Department in Saint Petersburg
State Unievrsity — for the invaluable discussions and assistance in obtaining the
results presented in this paper.

References

1. Alfred V.Aho, S.C.Johnson. Optimal Code Generation for Expression Trees. Jour-
nal of the ACM, Vol. 23, No. 3, July 1976, pp. 488-501

* http://caml.inria.fr/index-eng.html



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

. Alfred V.Aho, Ravi Sethi. Compilers: Principles, Techniques and Tools. Addison-

Wesley Pub Co., Nov. 1985

Alfred V.Aho, Steven W.K.Tjiang. Code Generation Using Tree Matching and Dy-
namic Programming. ACM Transactions on Programming Languages and Systems,
Vol. 11, No. 4, Oct. 1989, pp. 491-516

Dmitry Boulytchev, Eugene Vigdorchik, Dmitry Lomov, Mikhail Smirnov. Retar-
getable Tools for Efficient Code Generation, Technical Report, St.Petersburg State
University, January 2001, http://oops.tepkom.ru/eval.html

Hubert Comon, Max Dauchet et al. Tree Automata Techniques and Applications.
http://13ux02.univ-lille3.fr/"tommasi/TATAHTML /main.html

H. Emmelmann, F.W.Schréer, R.Landwehr. BEG — a Generator for Efficient Back
Ends. Proceedings of the SIGPLAN’89 Conference on Programming Languages
Design and Implementation, 1989, pp. 227-237

M. Anton Ertl. Optimal Code Selection in DAGs. Proceedings of the 26th ACM
SIGPLAN-SIGACT Conference on Principles of Programming Languages, 1999,
pp. 242-249

Jack W. Davidson, Steve G.Losen, Norman Ramsey. VPO Code-Generation
Interfaces. Department of Computer Sciences University of Virginia, 1998,
http://www.cs.virginia.edu/zephyr/vpoi

Christopher W.Fraser, David R.Hanson. A Retargetable C Compiler: Design and
Implementation. Addison-Wesley Pub Co., Jan. 1995

Christopher W.Fraser, David R.Hanson. A Retargetable Compiler for ANSI C.
ACM SIGPLAN Notices, Vol. 26, No. 10, Oct. 1991, pp. 2943

Christopher W.Fraser, David R.Hanson. A Code Generation Interface for ANSI C.
Software — Practice and Experience Vol. 21, No. 9, Sept. 1991, pp. 963-988
Christopher W.Fraser, David R.Hanson. Simple register spilling in retargetable
compiler. Software — Practice and Experience, Vol. 22, No. 1, Jan. 1992, pp. 85—
99

Christopher W.Fraser, David R.Hanson, Todd A.Proebsting. Engeneering a simple,
efficient code generator generator. ACM Letters on Programming Languages and
Systems, Vol. 1, No. 3, Sep. 1992, pp. 213-226

Mahadevan Ganapathi, Charles N. Fischer. Affix grammar driven code generation.
ACM Transactions on Programming Languages and Systems, Vol. 7, No. 4, Oct.
1985, pp. 560-599

Silvina Hanono, Srinivas Devadas. Instruction Selection, Resource Allocation and
Scheduling in the AVIV Retargetable Code Generator. Proceedings of the 35th
ACM/IEEE Annual Conference on Design Automation, 1998, pp. 510-515

David R. Hanson. Early Expirience with ASDL in lcc.
http://www.cs.princeton.edu/software/lcc/doc

Seh-Woong Jeong, Fabio Somenzi. A New Algorithm for the Binate Covering Prob-
lem and Its Application to the Minimization of Boolean Relations. Proceedings of
the 1992 IEEE/ACM International Conference on Computer—Aided Design, 1992,
pp. 417-420

Monika Lam et al., An Overview of the SUIF2 Compiler Infrastructure. Computer
Systems Laboratory, Stanford University, 2000, http://suif.stanford.edu/suif/suif2
Rainer Leupers, Peter Marwedel. Retargetable Generation of Code Selectors from
HDL Processor Models. Proceedings of the 1997 European Design and Test Con-
ference

Stan Liao, Srinivas Devadas, Kurt Keutzer, Steve Tjiang. Instruction Selection Us-
ing Binate Covering for Code Size Optimization. Proceedings of 1995 IEEE/ACM
International Conference on Computer—Aided Design, 1995, pp. 393—-399



21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Robert Morgan. Building an optimizaing Compiler. Digital Press, Feb. 1998
Steven Muchnik. Advanced Compiler Design and Implementation. Morgan Kauf-
mann Publishers, July 1997

Carsten Miillr. Code Selection from Directed Acyclic Graphs in the Context of Do-
main Specific Digital Signal Processors. Technical Report, Humboldt-Universitét
zu Berlin, August 10, 1994

Eduardo Pelegri-Llopart, Susan L.Graham. Optimal Code Generation for Expres-
sion Trees: An Application of BURS Theory. Proceedings of the conference on
Principles of programming languages, 1988, 294-308

Todd A.Proebsting. BURS Automata Generation. ACM Transactions on Program-
ming Languages and Systems, Vol. 17, No. 3, May 1995, pp. 461-486

Norman Ramsey, Mary F. Fernandez. Specifying Representation of Machine In-
structions. ACM Transactions on Programming Languages and Systems. Vol. 19,
No. 3, May 1997, pp. 492-524

Norman Ramsey, Jack W. Davidson. Specifying Instructions’ Semantics
Using A-RTL (Interim Report). University of Virginia, July 11, 1999,
http://www.cs.virginia/edu/zephyr/csdl/Irtlindex.html

Michael D. Smith, Glenn Holloway. An Introduction to Ma-
chine SUIF and 1Its Portable Libraries and Optimizations. Divi-
sion of Engineering and Applied Sciences, Harvard University, 2000,
http://www.eecs.harvard.edu/hube/research /machsuif.html

Michael D. Smith, Glenn Holloway. A User’s Guide to the Optimization Program-
ming Interfaces. Division of Engeneering and Applied Sciences, Harvard University,
2000, http://www.eecs.harvard.edu/hube/research /machsuif.html

Using and Porting GNU Compiler Collection (GCO).
http://gce.gnu.org/onlinedocs/gec_toc.html

Bert-Steffen Visser. A Framework for Retargetable Code Generation Using Simu-
lated Annealing. Proceedings of the 25th Euromicro Conference, 1999



