
An Empiri
al Study of Retargetable Compilers

Dmitry Boulyt
hev and Dmitry Lomov

fdb,dslg�tepkom.ru

St.-Petersburg State University, Fa
ulty of Mathemati
s and Me
hani
s

Department of System Programming

198504, Russia, St.Petersburg, Bibliote
hnaya sq., 2

Tel./Fax: +7(812)428-71-09

Abstra
t. The paper des
ribes evaluation results of some modern re-

targetable 
odegeneration frameworks. The evaluation was performed to

estimate appli
ability of these approa
hes in hardware-software 
odesign

domain so ease of retargetability and eÆ
ien
y of generated 
ode were

main 
riteria. Evaluated tools were sele
ted from National Compiler In-

frastru
ture (NCI) proje
t.

1 Introdu
tion

Hardware-software 
odesign is modern te
hnique aimed to obtain high produ
-

tivity of real-time and embedded systems. Key feature of this approa
h is simul-

taneous development of the program and the target pro
essor or spe
ialization

of parameterized pro
essor ar
hite
ture to mat
h target software appli
ation.

Generally, 
odesign implies iterative development. Ea
h iteration 
onsists of

building new hardware des
ription based on previous pro�ling and eÆ
ien
y

estimations, building (somehow) 
ompiler, debugger, simulator, 
ompiling and

possible debugging target appli
ation, pro�ling and estimation of pro�t/loss. So

building set of retargetable tools is basi
 and very frequent pro
edure.

Despite a number of retargetability te
hniques building of 
ompiler still re-

mains matter of art. Sin
e main 
odegeneration approa
hes are investigated well

the 
ontiguous tasks (supporting of 
alling and linking 
onventions, building de-

bugger and pro�ler et
.) should be solved (semi){manually. The most 
ru
ial

problem of building ma
hine{dependent 
ode optimizer also remains open.

Here we des
ribe most re
ent retargetable 
odegeneration frameworks that

look most preferable for purposes under 
onsiderations and brie
y present the

results of their evaluation (see [4℄ for details).

2 Retargetability Issues

Compiler's retargetability is usually understood as its ability to be re{targeted

to another ma
hine platform \automati
ally" or "nearly automati
ally". This

implies building of 
odegenerator from some des
ription. Ideally su
h a des
rip-

tion should be extra
ted from des
ription of a
tual hardware but as for now



there is well-known semanti
 gap between hardware des
ription and 
odegener-

ator des
ription. So now transition from hardware to 
odegenerator is mainly

pro
eeds as follows: �rst verbal instru
tion set des
ription is produ
ed, then


odegenerator des
ription is written from it.

Starting from the most fundamental results in 
ode generation area [1, 3℄ main

retargetability te
hnique stays tree pattern mat
hing and dynami
 programming.

A number of ways to exploit this idea are investigated [6, 7, 13, 24, 25℄; also there

are a number of 
ompilers based on them. These methods often 
onsidered as

means of instru
tion sele
tion so register allo
ation and instru
tion s
heduling

should be done separately.

Similar attribute-grammar based method des
ribed in [14℄. Most of heuristi



odegenerators use this notion.

Quite di�erent approa
h suitable for VLIW pro
essors 
odegeneration is sug-

gested in [15, 20℄. This approa
h is based on 
overing of so{
alled split{node DAG

that re
e
ts possibilities of parallel exe
ution of DAG nodes with primitive in-

stru
tions | so instru
tion sele
tion, resigter allo
ation and s
heduling are all

performed simultaneously. To provide feasible s
hedule binate 
overing method

is used [17, 20℄. Unfortunally there is no 
ompiler built on this te
hnology so

there is nothing to evaluate yet.

Finally there are some novel approa
hes to retargetable 
odegeneration in-


luding automati
 building of 
odegenerator from ar
hite
ture or instru
tion set

des
ription [19, 23, 31℄. However tools presented there are either far from real

industrial 
ompilers or not a

essible for evaluation.

3 Criteria and Methods

The basi
 fa
tors to be taken into a

ount are, of 
ourse, quality of generated


ode and ease of retargetability.

To assess quality of generated 
ode, we 
ompare the performan
e of several

ben
hmarks on ar
hite
tures that the tools being evaluated are already ported.

We use Intel Pentium III and Sun SPARC pro
essors for this purpose.

We used ben
hmarks developed by Standard Performan
e Evaluation Corpo-

ration (SPEC)

1

. This is an industry-standard set of ben
hmarks to assess quality

of 
omputer systems. However SPEC was not initially designed to be used as

tool for 
ompilers' performan
e 
omparison. For example it 
ontains ben
hmarks

written in di�erent programming languages (Fortran, C++, C) and moreover

utilized some spe
i�
 
ompiler-dependent features. So we 
hanged some SPEC

ben
hmarks to make them appropriate for other 
ompilers being evaluated.

Then it turned out that some of 
ompilers were unable to 
ompile some

SPEC tests 
orre
tly either at whole or with some optimizations turned on. So

we provide some auxilliary narrow set of ben
hmarks beyond basi
 SPEC set.

These ben
hmarks are:

{ bzip2 : BWT-based data 
ompression utility, by Julian Seward

1

http://www.spe
.org



{ gzip: LZW-based data 
ompressor, by Jean-Loup Gailly

{ ranking : Implementation of Symbol Ranking text 
ompression algorithm, by

Dmitry Lomov

All of these ben
hmarks were 
ompiled by all of evaluated tools with major

optimizations turned on.

In a

ording to reasons mentioned above we evaluated all tools in a

ording

with measures listed below:

{ Soundness : des
ribes how 
lose evaluated tool is to real industry 
ompiler.

We express soundness in per
ents of all passed SPEC ben
hmarks

{ Sele
ted Performan
e: des
ribes peak 
ompiler performan
e. To evaluate se-

le
ted performan
e we 
ompared 
ompilers on narrow set of ben
hmarks.

We express sele
ted performan
e using formula K=absolute running time,

where K - some spe
ially sele
ted 
onstant

{ Overall Performan
e: des
ribes performan
e evaluated on full SPEC suite.

In addition we use non-retargetable platform-native 
ompiler for 
omparison

purposes. Overall performan
e expressed in per
ents of best performan
e

among all tools

Informally speaking sele
ted performan
e re
e
ts some expe
tations about


ompiler's performan
e after all bugs eliminated. Note that this estimation is

rather optimisti
 be
ause fast 
ode 
an probably be generated due to ina

urate

analysis during optimizations.

To assess ease of retargetability, ea
h tool evaluated has been ported to a

\toy" instru
tion set, designed for a spe
i�
 algorithm. Symbol Ranking was


hoosen as target algorithm. This estimation is also optimisti
 be
ause it is

mu
h simpler to port 
ompiler for spe
ial �xed appli
ation.

4 Evaluated tools

We sele
ted 
ompilers from National Compiler Infrastru
ture (NCI)

2

proje
t.

The proje
t was started under support of DARPA and NSF by major USA

Universities (Harvard, Prin
eton, Stanford, Ri
e et
.)

On the other hand we have 
hosen legendary g

 
ompiler [30℄ as most

authoritative industrial optimizing C 
ompiler.

NCI proje
t is aimed at developing interoperable framework for 
onstru
ting

retargetable, optimizing 
ompilers. Combination of these two qualities { retar-

getability and optimization { is 
ru
ial for hardware-software 
odesign. Without

good retargetability, 
o-design 
y
le be
omes unbearably long; without optimiza-

tion, the whole idea of 
o-design is 
ompromised, as non-optimizing 
ompiler does

not employ features of the target ar
hite
ture to its best. NCI proje
t 
ompilers

represent 
urrent state-of-the-art in developing easily retargetable, optimizing


ompilers.

Currently three C 
ompilers are available from NCI: SUIF/Ma
hSUIF, l



and VPO-based 
ompiler. We evaluated all of them.

2

http://www.
s.virginia.edu/n
i/



SUIF and Ma
hSUIF. SUIF (Stanford University Intermediate Format) [18℄

and Ma
hSUIF (Ma
hine SUIF) [?,29℄ are developed in Stanford and Har-

vard Universities 
orrespondingly. Both systems are parts of NCI proje
t.

Unfortunately SUIF/Ma
hSUIF 
ompiler is not ported to Sun SPARC so it

is not evaluated at that platform.

VPO-based 
ompiler. VPO (Very Portable Optimizer) is a part of Zephyr

3

proje
t. The proje
t is in turn part of NCI.

l

 
ompiler. l

 
ompiler was developed in Prin
eton University, USA, sin
e

1991 and later was also involved into NCI proje
t [9{12℄.

5 Results and Con
lusions

Unfortunately at the time of writing on Sun SPARC platform only sele
ted

performan
e evaluation was 
ompleted. The result of the evaluation is shown at

�gure 1. The other results are to appear at http://oops.tepkom.ru/eval.html in

near future.

Fig. 1. Sele
ted Performan
e on Sun SPARC, 1000/absolute time

Results of soudness evaluation on Intel Pentium III platform are shown at

�gure 2. We 
an 
on
lude that neither SUIF nor VPO turned out to be ready-to-

use 
ompilers | during the evaluation we en
ontered lots of bugs that had to

be �xed.

Sele
ted and overall performan
e evaluation results at Intel Pentuim III are

shown at �gure 3 and �gure 4 
orrespondingly. We have 
hoosen Intel C/C++


ompiler (i

) as non-retargetable platform-native 
ompiler.

3

http://www.
s.virginia.edu/zephyr



Fig. 2. Soundness on Intel Pentium III, % of passed ben
hmarks

Fig. 3. Sele
ted Performan
e on Intel Pentium III, 1000/absolute time

Fig. 4. Overall Performan
e on Intel Pentium III, % of best performan
e



Our ben
hmarks show that SUIF/Ma
hSUIF 
ompiler is 
ompetely unappli
a-

ble for produ
ing eÆ
ient 
ode. This is largerly due to inappropriate instru
tion

sele
tion te
hniques and la
k of optimizations.

Regarding the eÆ
ien
y of generated 
ode, we saw that generally g

with op-

timizations on beats all the other retargetable tools. If optimizations are turned

o� in all tools, l

 shows best performan
e. VPO has shown quite irregular per-

forman
e | on some ben
hmarks it produ
es the best 
ode of all, while on others

it lose even to non-optimizing l

 
ompiler.

However as a result of auxilliary testing we dis
overed \
ontradi
tionary"

ben
hmarks that are not �t into 
on
lusion given above:

1. l

 beats all retargetable tools on Obje
tive Caml

4

garbage 
olle
tor im-

plementation (30% better than g

) on Intel Pentium III

2. VPO beats all retargetable tools on 
ertain implementation of Symbol Rank-

ing text 
ompression algorithm (5 times better than g

) on Sun SPARC

Finally we 
an see that platform-spe
i�
 Intel 
ompiler outperforms all re-

targetable tools.

As the ease of retargeting, l

 turned out to be the best of all 
onsidered

tools. g

 and VPO on the whole show same level of retargetability, although

g

 is mu
h better do
umented. SUIF/Ma
hSUIF is less retargetable be
ause it

is ne
essary to rewrite 
odegenerator manually to retarget it.

We 
on
lude that none of the methods 
onsidered allows to build a retar-

getable 
ode generator that 
an dire
tly be utilized for 
o-design purposes.

We also see the importan
e of instru
tion sele
tion | l

, a non-optimizing


ompiler with good instru
tion sele
tion algorithm based on BURS [3, 7, 13, 24,

25℄ shows quite good performan
e.

However, good instru
tion sele
tion is not enough for obtaining optimized


ode. VPO outperforms l

 on majority of tests.

This resear
h shows the dire
tions for further development in 
o{design and


ode generation area. Easily retargetable, optimizing 
ompilers are vital for

hardware-software 
o-design, but we see that te
hniques for building them are

yet to be 
reated.

A
knowledgments

We would like to thank Mikhail Smirnov and Eugene Vigdor
hik | our 
ol-

leagues in OOPS team of System Programming Department in Saint Petersburg

State Unievrsity | for the invaluable dis
ussions and assistan
e in obtaining the

results presented in this paper.

Referen
es

1. Alfred V.Aho, S.C.Johnson. Optimal Code Generation for Expression Trees. Jour-

nal of the ACM, Vol. 23, No. 3, July 1976, pp. 488{501

4

http://
aml.inria.fr/index-eng.html



2. Alfred V.Aho, Ravi Sethi. Compilers: Prin
iples, Te
hniques and Tools. Addison-

Wesley Pub Co., Nov. 1985

3. Alfred V.Aho, Steven W.K.Tjiang. Code Generation Using Tree Mat
hing and Dy-

nami
 Programming. ACM Transa
tions on Programming Languages and Systems,

Vol. 11, No. 4, O
t. 1989, pp. 491{516

4. Dmitry Boulyt
hev, Eugene Vigdor
hik, Dmitry Lomov, Mikhail Smirnov. Retar-

getable Tools for EÆ
ient Code Generation, Te
hni
al Report, St.Petersburg State

University, January 2001, http://oops.tepkom.ru/eval.html

5. Hubert Comon, Max Dau
het et al. Tree Automata Te
hniques and Appli
ations.

http://l3ux02.univ-lille3.fr/~tommasi/TATAHTML/main.html

6. H. Emmelmann, F.W.S
hr�oer, R.Landwehr. BEG | a Generator for EÆ
ient Ba
k

Ends. Pro
eedings of the SIGPLAN'89 Conferen
e on Programming Languages

Design and Implementation, 1989, pp. 227{237

7. M. Anton Ertl. Optimal Code Sele
tion in DAGs. Pro
eedings of the 26th ACM

SIGPLAN-SIGACT Conferen
e on Prin
iples of Programming Languages, 1999,

pp. 242{249

8. Ja
k W. Davidson, Steve G.Losen, Norman Ramsey. VPO Code-Generation

Interfa
es. Department of Computer S
ien
es University of Virginia, 1998,

http://www.
s.virginia.edu/zephyr/vpoi

9. Christopher W.Fraser, David R.Hanson. A Retargetable C Compiler: Design and

Implementation. Addison-Wesley Pub Co., Jan. 1995

10. Christopher W.Fraser, David R.Hanson. A Retargetable Compiler for ANSI C.

ACM SIGPLAN Noti
es, Vol. 26, No. 10, O
t. 1991, pp. 29{43

11. Christopher W.Fraser, David R.Hanson. A Code Generation Interfa
e for ANSI C.

Software | Pra
ti
e and Experien
e Vol. 21, No. 9, Sept. 1991, pp. 963{988

12. Christopher W.Fraser, David R.Hanson. Simple register spilling in retargetable


ompiler. Software | Pra
ti
e and Experien
e, Vol. 22, No. 1, Jan. 1992, pp. 85{

99

13. Christopher W.Fraser, David R.Hanson, Todd A.Proebsting. Engeneering a simple,

eÆ
ient 
ode generator generator. ACM Letters on Programming Languages and

Systems, Vol. 1, No. 3, Sep. 1992, pp. 213{226

14. Mahadevan Ganapathi, Charles N. Fis
her. AÆx grammar driven 
ode generation.

ACM Transa
tions on Programming Languages and Systems, Vol. 7, No. 4, O
t.

1985, pp. 560{599

15. Silvina Hanono, Srinivas Devadas. Instru
tion Sele
tion, Resour
e Allo
ation and

S
heduling in the AVIV Retargetable Code Generator. Pro
eedings of the 35th

ACM/IEEE Annual Conferen
e on Design Automation, 1998, pp. 510{515

16. David R. Hanson. Early Expirien
e with ASDL in l

.

http://www.
s.prin
eton.edu/software/l

/do


17. Seh-Woong Jeong, Fabio Somenzi. A New Algorithm for the Binate Covering Prob-

lem and Its Appli
ation to the Minimization of Boolean Relations. Pro
eedings of

the 1992 IEEE/ACM International Conferen
e on Computer{Aided Design, 1992,

pp. 417{420

18. Monika Lam et al., An Overview of the SUIF2 Compiler Infrastru
ture. Computer

Systems Laboratory, Stanford University, 2000, http://suif.stanford.edu/suif/suif2

19. Rainer Leupers, Peter Marwedel. Retargetable Generation of Code Sele
tors from

HDL Pro
essor Models. Pro
eedings of the 1997 European Design and Test Con-

feren
e

20. Stan Liao, Srinivas Devadas, Kurt Keutzer, Steve Tjiang. Instru
tion Sele
tion Us-

ing Binate Covering for Code Size Optimization. Pro
eedings of 1995 IEEE/ACM

International Conferen
e on Computer{Aided Design, 1995, pp. 393{399



21. Robert Morgan. Building an optimizaing Compiler. Digital Press, Feb. 1998

22. Steven Mu
hnik. Advan
ed Compiler Design and Implementation. Morgan Kauf-

mann Publishers, July 1997

23. Carsten M�ullr. Code Sele
tion from Dire
ted A
y
li
 Graphs in the Context of Do-

main Spe
i�
 Digital Signal Pro
essors. Te
hni
al Report, Humboldt-Universit�at

zu Berlin, August 10, 1994

24. Eduardo Pelegr��-Llopart, Susan L.Graham. Optimal Code Generation for Expres-

sion Trees: An Appli
ation of BURS Theory. Pro
eedings of the 
onferen
e on

Prin
iples of programming languages, 1988, 294{308

25. Todd A.Proebsting. BURS Automata Generation. ACM Transa
tions on Program-

ming Languages and Systems, Vol. 17, No. 3, May 1995, pp. 461{486

26. Norman Ramsey, Mary F. Fernandez. Spe
ifying Representation of Ma
hine In-

stru
tions. ACM Transa
tions on Programming Languages and Systems. Vol. 19,

No. 3, May 1997, pp. 492{524

27. Norman Ramsey, Ja
k W. Davidson. Spe
ifying Instru
tions' Semanti
s

Using �-RTL (Interim Report). University of Virginia, July 11, 1999,

http://www.
s.virginia/edu/zephyr/
sdl/lrtlindex.html

28. Mi
hael D. Smith, Glenn Holloway. An Introdu
tion to Ma-


hine SUIF and Its Portable Libraries and Optimizations. Divi-

sion of Engineering and Applied S
ien
es, Harvard University, 2000,

http://www.ee
s.harvard.edu/hube/resear
h/ma
hsuif.html

29. Mi
hael D. Smith, Glenn Holloway. A User's Guide to the Optimization Program-

ming Interfa
es. Division of Engeneering and Applied S
ien
es, Harvard University,

2000, http://www.ee
s.harvard.edu/hube/resear
h/ma
hsuif.html

30. Using and Porting GNU Compiler Colle
tion (GCC).

http://g

.gnu.org/onlinedo
s/g

 to
.html

31. Bert-Ste�en Visser. A Framework for Retargetable Code Generation Using Simu-

lated Annealing. Pro
eedings of the 25th Euromi
ro Conferen
e, 1999


