
An Empirial Study of Retargetable Compilers

Dmitry Boulythev and Dmitry Lomov

fdb,dslg�tepkom.ru

St.-Petersburg State University, Faulty of Mathematis and Mehanis

Department of System Programming

198504, Russia, St.Petersburg, Bibliotehnaya sq., 2

Tel./Fax: +7(812)428-71-09

Abstrat. The paper desribes evaluation results of some modern re-

targetable odegeneration frameworks. The evaluation was performed to

estimate appliability of these approahes in hardware-software odesign

domain so ease of retargetability and eÆieny of generated ode were

main riteria. Evaluated tools were seleted from National Compiler In-

frastruture (NCI) projet.

1 Introdution

Hardware-software odesign is modern tehnique aimed to obtain high produ-

tivity of real-time and embedded systems. Key feature of this approah is simul-

taneous development of the program and the target proessor or speialization

of parameterized proessor arhiteture to math target software appliation.

Generally, odesign implies iterative development. Eah iteration onsists of

building new hardware desription based on previous pro�ling and eÆieny

estimations, building (somehow) ompiler, debugger, simulator, ompiling and

possible debugging target appliation, pro�ling and estimation of pro�t/loss. So

building set of retargetable tools is basi and very frequent proedure.

Despite a number of retargetability tehniques building of ompiler still re-

mains matter of art. Sine main odegeneration approahes are investigated well

the ontiguous tasks (supporting of alling and linking onventions, building de-

bugger and pro�ler et.) should be solved (semi){manually. The most ruial

problem of building mahine{dependent ode optimizer also remains open.

Here we desribe most reent retargetable odegeneration frameworks that

look most preferable for purposes under onsiderations and briey present the

results of their evaluation (see [4℄ for details).

2 Retargetability Issues

Compiler's retargetability is usually understood as its ability to be re{targeted

to another mahine platform \automatially" or "nearly automatially". This

implies building of odegenerator from some desription. Ideally suh a desrip-

tion should be extrated from desription of atual hardware but as for now



there is well-known semanti gap between hardware desription and odegener-

ator desription. So now transition from hardware to odegenerator is mainly

proeeds as follows: �rst verbal instrution set desription is produed, then

odegenerator desription is written from it.

Starting from the most fundamental results in ode generation area [1, 3℄ main

retargetability tehnique stays tree pattern mathing and dynami programming.

A number of ways to exploit this idea are investigated [6, 7, 13, 24, 25℄; also there

are a number of ompilers based on them. These methods often onsidered as

means of instrution seletion so register alloation and instrution sheduling

should be done separately.

Similar attribute-grammar based method desribed in [14℄. Most of heuristi

odegenerators use this notion.

Quite di�erent approah suitable for VLIW proessors odegeneration is sug-

gested in [15, 20℄. This approah is based on overing of so{alled split{node DAG

that reets possibilities of parallel exeution of DAG nodes with primitive in-

strutions | so instrution seletion, resigter alloation and sheduling are all

performed simultaneously. To provide feasible shedule binate overing method

is used [17, 20℄. Unfortunally there is no ompiler built on this tehnology so

there is nothing to evaluate yet.

Finally there are some novel approahes to retargetable odegeneration in-

luding automati building of odegenerator from arhiteture or instrution set

desription [19, 23, 31℄. However tools presented there are either far from real

industrial ompilers or not aessible for evaluation.

3 Criteria and Methods

The basi fators to be taken into aount are, of ourse, quality of generated

ode and ease of retargetability.

To assess quality of generated ode, we ompare the performane of several

benhmarks on arhitetures that the tools being evaluated are already ported.

We use Intel Pentium III and Sun SPARC proessors for this purpose.

We used benhmarks developed by Standard Performane Evaluation Corpo-

ration (SPEC)

1

. This is an industry-standard set of benhmarks to assess quality

of omputer systems. However SPEC was not initially designed to be used as

tool for ompilers' performane omparison. For example it ontains benhmarks

written in di�erent programming languages (Fortran, C++, C) and moreover

utilized some spei� ompiler-dependent features. So we hanged some SPEC

benhmarks to make them appropriate for other ompilers being evaluated.

Then it turned out that some of ompilers were unable to ompile some

SPEC tests orretly either at whole or with some optimizations turned on. So

we provide some auxilliary narrow set of benhmarks beyond basi SPEC set.

These benhmarks are:

{ bzip2 : BWT-based data ompression utility, by Julian Seward

1

http://www.spe.org



{ gzip: LZW-based data ompressor, by Jean-Loup Gailly

{ ranking : Implementation of Symbol Ranking text ompression algorithm, by

Dmitry Lomov

All of these benhmarks were ompiled by all of evaluated tools with major

optimizations turned on.

In aording to reasons mentioned above we evaluated all tools in aording

with measures listed below:

{ Soundness : desribes how lose evaluated tool is to real industry ompiler.

We express soundness in perents of all passed SPEC benhmarks

{ Seleted Performane: desribes peak ompiler performane. To evaluate se-

leted performane we ompared ompilers on narrow set of benhmarks.

We express seleted performane using formula K=absolute running time,

where K - some speially seleted onstant

{ Overall Performane: desribes performane evaluated on full SPEC suite.

In addition we use non-retargetable platform-native ompiler for omparison

purposes. Overall performane expressed in perents of best performane

among all tools

Informally speaking seleted performane reets some expetations about

ompiler's performane after all bugs eliminated. Note that this estimation is

rather optimisti beause fast ode an probably be generated due to inaurate

analysis during optimizations.

To assess ease of retargetability, eah tool evaluated has been ported to a

\toy" instrution set, designed for a spei� algorithm. Symbol Ranking was

hoosen as target algorithm. This estimation is also optimisti beause it is

muh simpler to port ompiler for speial �xed appliation.

4 Evaluated tools

We seleted ompilers from National Compiler Infrastruture (NCI)

2

projet.

The projet was started under support of DARPA and NSF by major USA

Universities (Harvard, Prineton, Stanford, Rie et.)

On the other hand we have hosen legendary g ompiler [30℄ as most

authoritative industrial optimizing C ompiler.

NCI projet is aimed at developing interoperable framework for onstruting

retargetable, optimizing ompilers. Combination of these two qualities { retar-

getability and optimization { is ruial for hardware-software odesign. Without

good retargetability, o-design yle beomes unbearably long; without optimiza-

tion, the whole idea of o-design is ompromised, as non-optimizing ompiler does

not employ features of the target arhiteture to its best. NCI projet ompilers

represent urrent state-of-the-art in developing easily retargetable, optimizing

ompilers.

Currently three C ompilers are available from NCI: SUIF/MahSUIF, l

and VPO-based ompiler. We evaluated all of them.

2

http://www.s.virginia.edu/ni/



SUIF and MahSUIF. SUIF (Stanford University Intermediate Format) [18℄

and MahSUIF (Mahine SUIF) [?,29℄ are developed in Stanford and Har-

vard Universities orrespondingly. Both systems are parts of NCI projet.

Unfortunately SUIF/MahSUIF ompiler is not ported to Sun SPARC so it

is not evaluated at that platform.

VPO-based ompiler. VPO (Very Portable Optimizer) is a part of Zephyr

3

projet. The projet is in turn part of NCI.

l ompiler. l ompiler was developed in Prineton University, USA, sine

1991 and later was also involved into NCI projet [9{12℄.

5 Results and Conlusions

Unfortunately at the time of writing on Sun SPARC platform only seleted

performane evaluation was ompleted. The result of the evaluation is shown at

�gure 1. The other results are to appear at http://oops.tepkom.ru/eval.html in

near future.

Fig. 1. Seleted Performane on Sun SPARC, 1000/absolute time

Results of soudness evaluation on Intel Pentium III platform are shown at

�gure 2. We an onlude that neither SUIF nor VPO turned out to be ready-to-

use ompilers | during the evaluation we enontered lots of bugs that had to

be �xed.

Seleted and overall performane evaluation results at Intel Pentuim III are

shown at �gure 3 and �gure 4 orrespondingly. We have hoosen Intel C/C++

ompiler (i) as non-retargetable platform-native ompiler.

3

http://www.s.virginia.edu/zephyr



Fig. 2. Soundness on Intel Pentium III, % of passed benhmarks

Fig. 3. Seleted Performane on Intel Pentium III, 1000/absolute time

Fig. 4. Overall Performane on Intel Pentium III, % of best performane



Our benhmarks show that SUIF/MahSUIF ompiler is ompetely unapplia-

ble for produing eÆient ode. This is largerly due to inappropriate instrution

seletion tehniques and lak of optimizations.

Regarding the eÆieny of generated ode, we saw that generally gwith op-

timizations on beats all the other retargetable tools. If optimizations are turned

o� in all tools, l shows best performane. VPO has shown quite irregular per-

formane | on some benhmarks it produes the best ode of all, while on others

it lose even to non-optimizing l ompiler.

However as a result of auxilliary testing we disovered \ontraditionary"

benhmarks that are not �t into onlusion given above:

1. l beats all retargetable tools on Objetive Caml

4

garbage olletor im-

plementation (30% better than g) on Intel Pentium III

2. VPO beats all retargetable tools on ertain implementation of Symbol Rank-

ing text ompression algorithm (5 times better than g) on Sun SPARC

Finally we an see that platform-spei� Intel ompiler outperforms all re-

targetable tools.

As the ease of retargeting, l turned out to be the best of all onsidered

tools. g and VPO on the whole show same level of retargetability, although

g is muh better doumented. SUIF/MahSUIF is less retargetable beause it

is neessary to rewrite odegenerator manually to retarget it.

We onlude that none of the methods onsidered allows to build a retar-

getable ode generator that an diretly be utilized for o-design purposes.

We also see the importane of instrution seletion | l, a non-optimizing

ompiler with good instrution seletion algorithm based on BURS [3, 7, 13, 24,

25℄ shows quite good performane.

However, good instrution seletion is not enough for obtaining optimized

ode. VPO outperforms l on majority of tests.

This researh shows the diretions for further development in o{design and

ode generation area. Easily retargetable, optimizing ompilers are vital for

hardware-software o-design, but we see that tehniques for building them are

yet to be reated.

Aknowledgments

We would like to thank Mikhail Smirnov and Eugene Vigdorhik | our ol-

leagues in OOPS team of System Programming Department in Saint Petersburg

State Unievrsity | for the invaluable disussions and assistane in obtaining the

results presented in this paper.

Referenes

1. Alfred V.Aho, S.C.Johnson. Optimal Code Generation for Expression Trees. Jour-

nal of the ACM, Vol. 23, No. 3, July 1976, pp. 488{501

4

http://aml.inria.fr/index-eng.html



2. Alfred V.Aho, Ravi Sethi. Compilers: Priniples, Tehniques and Tools. Addison-

Wesley Pub Co., Nov. 1985

3. Alfred V.Aho, Steven W.K.Tjiang. Code Generation Using Tree Mathing and Dy-

nami Programming. ACM Transations on Programming Languages and Systems,

Vol. 11, No. 4, Ot. 1989, pp. 491{516

4. Dmitry Boulythev, Eugene Vigdorhik, Dmitry Lomov, Mikhail Smirnov. Retar-

getable Tools for EÆient Code Generation, Tehnial Report, St.Petersburg State

University, January 2001, http://oops.tepkom.ru/eval.html

5. Hubert Comon, Max Dauhet et al. Tree Automata Tehniques and Appliations.

http://l3ux02.univ-lille3.fr/~tommasi/TATAHTML/main.html

6. H. Emmelmann, F.W.Shr�oer, R.Landwehr. BEG | a Generator for EÆient Bak

Ends. Proeedings of the SIGPLAN'89 Conferene on Programming Languages

Design and Implementation, 1989, pp. 227{237

7. M. Anton Ertl. Optimal Code Seletion in DAGs. Proeedings of the 26th ACM

SIGPLAN-SIGACT Conferene on Priniples of Programming Languages, 1999,

pp. 242{249

8. Jak W. Davidson, Steve G.Losen, Norman Ramsey. VPO Code-Generation

Interfaes. Department of Computer Sienes University of Virginia, 1998,

http://www.s.virginia.edu/zephyr/vpoi

9. Christopher W.Fraser, David R.Hanson. A Retargetable C Compiler: Design and

Implementation. Addison-Wesley Pub Co., Jan. 1995

10. Christopher W.Fraser, David R.Hanson. A Retargetable Compiler for ANSI C.

ACM SIGPLAN Noties, Vol. 26, No. 10, Ot. 1991, pp. 29{43

11. Christopher W.Fraser, David R.Hanson. A Code Generation Interfae for ANSI C.

Software | Pratie and Experiene Vol. 21, No. 9, Sept. 1991, pp. 963{988

12. Christopher W.Fraser, David R.Hanson. Simple register spilling in retargetable

ompiler. Software | Pratie and Experiene, Vol. 22, No. 1, Jan. 1992, pp. 85{

99

13. Christopher W.Fraser, David R.Hanson, Todd A.Proebsting. Engeneering a simple,

eÆient ode generator generator. ACM Letters on Programming Languages and

Systems, Vol. 1, No. 3, Sep. 1992, pp. 213{226

14. Mahadevan Ganapathi, Charles N. Fisher. AÆx grammar driven ode generation.

ACM Transations on Programming Languages and Systems, Vol. 7, No. 4, Ot.

1985, pp. 560{599

15. Silvina Hanono, Srinivas Devadas. Instrution Seletion, Resoure Alloation and

Sheduling in the AVIV Retargetable Code Generator. Proeedings of the 35th

ACM/IEEE Annual Conferene on Design Automation, 1998, pp. 510{515

16. David R. Hanson. Early Expiriene with ASDL in l.

http://www.s.prineton.edu/software/l/do

17. Seh-Woong Jeong, Fabio Somenzi. A New Algorithm for the Binate Covering Prob-

lem and Its Appliation to the Minimization of Boolean Relations. Proeedings of

the 1992 IEEE/ACM International Conferene on Computer{Aided Design, 1992,

pp. 417{420

18. Monika Lam et al., An Overview of the SUIF2 Compiler Infrastruture. Computer

Systems Laboratory, Stanford University, 2000, http://suif.stanford.edu/suif/suif2

19. Rainer Leupers, Peter Marwedel. Retargetable Generation of Code Seletors from

HDL Proessor Models. Proeedings of the 1997 European Design and Test Con-

ferene

20. Stan Liao, Srinivas Devadas, Kurt Keutzer, Steve Tjiang. Instrution Seletion Us-

ing Binate Covering for Code Size Optimization. Proeedings of 1995 IEEE/ACM

International Conferene on Computer{Aided Design, 1995, pp. 393{399



21. Robert Morgan. Building an optimizaing Compiler. Digital Press, Feb. 1998

22. Steven Muhnik. Advaned Compiler Design and Implementation. Morgan Kauf-

mann Publishers, July 1997

23. Carsten M�ullr. Code Seletion from Direted Ayli Graphs in the Context of Do-

main Spei� Digital Signal Proessors. Tehnial Report, Humboldt-Universit�at

zu Berlin, August 10, 1994

24. Eduardo Pelegr��-Llopart, Susan L.Graham. Optimal Code Generation for Expres-

sion Trees: An Appliation of BURS Theory. Proeedings of the onferene on

Priniples of programming languages, 1988, 294{308

25. Todd A.Proebsting. BURS Automata Generation. ACM Transations on Program-

ming Languages and Systems, Vol. 17, No. 3, May 1995, pp. 461{486

26. Norman Ramsey, Mary F. Fernandez. Speifying Representation of Mahine In-

strutions. ACM Transations on Programming Languages and Systems. Vol. 19,

No. 3, May 1997, pp. 492{524

27. Norman Ramsey, Jak W. Davidson. Speifying Instrutions' Semantis

Using �-RTL (Interim Report). University of Virginia, July 11, 1999,

http://www.s.virginia/edu/zephyr/sdl/lrtlindex.html

28. Mihael D. Smith, Glenn Holloway. An Introdution to Ma-

hine SUIF and Its Portable Libraries and Optimizations. Divi-

sion of Engineering and Applied Sienes, Harvard University, 2000,

http://www.ees.harvard.edu/hube/researh/mahsuif.html

29. Mihael D. Smith, Glenn Holloway. A User's Guide to the Optimization Program-

ming Interfaes. Division of Engeneering and Applied Sienes, Harvard University,

2000, http://www.ees.harvard.edu/hube/researh/mahsuif.html

30. Using and Porting GNU Compiler Colletion (GCC).

http://g.gnu.org/onlinedos/g to.html

31. Bert-Ste�en Visser. A Framework for Retargetable Code Generation Using Simu-

lated Annealing. Proeedings of the 25th Euromiro Conferene, 1999


