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Abstract. We describe pretty-printing combinators with choice which
provide optimal document layout in polynomial time. Bottom-up tree
rewriting and dynamic programming (BURS) is used to calculate a set
of possible layouts for a given output width. We also present the results of
suggested approach evaluation and discuss its application for the imple-
mentation of pretty-printers.
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1 Introduction

Pretty-printing is a transformation which provides a human-readable text from
some internal program representation (for example, AST). The need for pretty-
printing arises in a wide variety of applications, for example IDEs [7], reengi-
neering tools [9] etc. In its utter form pretty-printer has to implement a reverse
transformation to parsing, i.e. to generate text which can further be edited and
parsed back.

The general requirement for pretty-printer to provide human-readable text
decomposes into many additional requirements most of which are hard to for-
malize. For example, the resulting text must be observable (not too wide and
not too long), it should reflect the structure of a program, it has to respect the
coding style conventions for a given project, etc. As a result, pretty-printers,
which try to fulfill these requirements, become hard to implement, maintain and
reason about.

In the realm of functional programming the natural approach to pretty-
printing is pretty-printing combinators: source representation of a program is
transformed into a structured document using relatively small set of construc-
tors. Then, this document is interpreted by a pretty-printing algorithm providing
string representation.
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The mainstream set of pretty-printer combinators originates from the works
of Wadler [15] and Hughes [6], who in turn referred to the approach developed
by Oppen [11]. The basic document constructors in this approach1 are:

– atomic string which is printed as is;
– separator ;
– sequential composition of two documents;
– scoping.

The definitive characteristic of this approach is the interpretation of sepa-
rators: all separators within a given scope can coherently be turned into either
spaces or newline symbols by a pretty-printing algorithm. The choice for sepa-
rators is determined by the requirement to respect given line width using as few
lines as possible (hence optimality property).

The original Oppen’s algorithm is essentially imperative; it works in a time
linear on an input program length and provides optimal result. Pretty-printer
combinators of Wadler and Hughes use backtracking and therefore less efficient;
in addition Hughes’ combinators do not provide optimality. More elaborated
versions with linear-time optimal implementation are presented in [4,10,12,13].
However, these works contribute more to functional programming than to pretty-
printing as such since all of them provide more advanced functional implemen-
tations of the same approach.

The problem with mainstream pretty-printer combinators is their weak
expressivity. They treat pretty-printing programs too uniformly which sometimes
can result in undesirable (or even incorrect) output. For example, if we pretty-
print Python programs, then we have to handle printing two operators on the
same line essentially differently since in this case additional separator character
(“;”) is required. However, mainstream pretty-printer combinators do not pro-
vide any means to specify such a behavior. Another example is layout-based syn-
tax which is generally cannot be generated by mainstream pretty-printers since
they treat vertical and horizontal spaces uniformly. It is impossible for main-
stream pretty-printer combinators to adopt various project-specific layouts —
they always generate text in a single hardcoded style. While some of these prob-
lems can be handled with other approaches [14] the resulting solutions utilize
much more advanced machinery then a small set of high-order functions.

The aforementioned deficiencies can be alleviated if the set of pretty-printing
primitives is extended by the notion of choice between various layouts. Thus,
instead of making it possible to freely break line at arbitrary space, we may
describe different variants of layouts and let pretty-printing algorithm choose
the best one. The ability to choose between different layouts gives rise to the
ability to support various code styles since each of them can be expressed as a
set of patterns to choose from.

Pretty-printing frameworks with choice are already considered in the lit-
erature; however, none of them are optimal and efficient at the same time.

1 The sets of combinators suggested by Hughes and Wadler slightly differ in details;
however both of them share a similar relevant properties.
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Pretty-printers described in [8,9] make use of the “ALT” operator which gives an
opportunity to express non-trivial layout variations. However, provided imple-
mentation does not deliver optimal layout because the choice is based on the
first document fitting in the given width. In contrast, pretty-printer combina-
tors described in [2] have no lack in expressiveness and generate optimal layout
but proposed algorithm has exponential complexity. Though authors later [3]
discuss some heuristic, this doesn’t change the worst-case behavior.

The contribution of this paper is optimal and polynomial-time re-implement-
ation of combinators with choice described in [2]. We utilize bottom-up tree
rewriting and dynamic programming (BURS) [1,5] to provide an optimal pretty-
printing algorithm which has linear complexity on the number of nodes in the
document, polynomial on the width of output and exponential only on the doc-
ument tree degree (which we consider a constant). Our implementation does not
make use of lazy evaluation and can be natively expressed in both strict and
non-strict languages.

2 Pretty-Printing Combinators with Choice

Pretty-printer combinators with choice were introduced in [2]; the implementa-
tion we refer to (and compare with) is a part of Utrecht Tools Library2 (there
are some negligible differences between published and implemented versions).

(a) Format shape (b) Beside composition (c) Above com-
position

Fig. 1. Format primitives

Output text in this approach is built from blocks shaped as rectangles with
possibly incomplete last line (Fig. 1a). In Haskell implementation blocks are rep-
resented by the values of type Format:

data Format = Elem {height :: Int

, lastLineWidth :: Int

, width :: Int

, txtstr :: Int → String → String

}

The first three fields specify the geometric properties of the block; the last one
is a content-generation function which is needed to provide a linear-time block-
to-text conversion in a functional settings. The first integer argument of txtstr
is an indentation of the whole block (so blocks can be moved right horizontally).

2 http://www.cs.uu.nl/wiki/HUT/WebHome.
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Table 1. Format and document manipulation primitives

s2fmt : : String → Format

indentFmt : : Int → Format → Format

aboveFmt : : Format → Format → Format

besideFmt : : Format → Format → Format

text : : String → Doc

indent : : Int → Doc → Doc

beside : : Doc → Doc → Doc

above : : Doc → Doc → Doc

There are four primitives working with formats (see Table 1, left column).
Function s2fmt creates a single-line Format from an atomic string; indentFmt
moves the whole block right by a given number of positions. Two composi-
tion primitives besideFmt and aboveFmt combine two layouts as shown on the
Fig. 1b, 1c.

The next notion in the framework is document. We may consider document
as a set of various layouts for the same text. Documents are represented by
the values of type Doc which we leave abstract by now. The right column in the
Table 1 shows four primitives for documents which are dual for those for formats.

In addition there is fifth operator for documents:

choice :: Doc → Doc → Doc

which denotes the union of two sets of layouts. Note that choice is the only
primitive which can produce multi-variant layouts from the single-variant argu-
ments.

From an end-user perspective, first, the document is created by means of
these five combinators. Then, the document can be rendered using the function

pretty :: Int → Doc → String

which takes the output width and the document and provides optimal layout.
The original implementation essentially relies on lazy evaluation. In [2] Doc

data type is represented as a (lazy) list of all possible layouts for a given width.
This list is sorted so “better” layouts come first. In the case of “beside” or
“above” document composition the complexity of the new document construc-
tion is O (n × m) where n and m are lengths of the first and the second layout
lists. The new document also has length O (n × m).

The document rendering function just takes the head of the document layouts
list. So, at the moment of rendering we need only its first element. Due to lazy
evaluation this may reduce the overall complexity. However, the implementation
of beside combinator in [2] triggers the full calculation of its both parameters
which compromises the benefits of lazy evaluation. Thus, the calculation of layout
in [2] has the worst-case exponential complexity on the number of combinators
used to construct the document. We do not see any way to avoid this drawback
while preserving list-based representation.

Despite a poor worst-case behavior optimal pretty-printing combinators with
choice can be used in many practical cases.

dboulytchev@math.spbu.ru



Polynomial-Time Optimal Pretty-Printing Combinators with Choice 261

3 Bottom-Up Rewrite Systems

Bottom-up rewrite systems (BURS) [1] is a dynamic programming framework
initially developed in the context of research on instruction selection problem for
machine code generation. The core notion of BURS is a weighted regular tree
grammar [5] i.e. a grammar with the following two kinds of rules:

N : α [c] and N : α (K1, . . . , Kn) [c]

Here N,Ki are nonterminals, α — terminal, c — cost functions (one per rule,
see below). Similar to the ordinary “linear” (or “word”) grammar we distinguish
certain starting nonterminal S and say that terminal-labeled tree is derivable in
the given grammar if it can be constructed from a single node labeled by S using
repetitive substitutions. Each substitution replaces (arbitrary) leaf labeled by a
nonterminal N with a tree α (K1, . . . , Kn) if there is a rule N : α (K1, . . . , Kn)
in the grammar. The cost functions are used to calculate the overall cost of a
certain derivation. Each cost function can depend on the terminal label (α) and
derivation costs for each subtree.

In the context of BURS we are interested in (arbitrary) least-cost derivation
of a certain tree provided by a certain grammar. This derivation can be found
by a two-pass algorithm.

The first pass (labeling) traverses the subject tree bottom-up and calculates
for each its node the set of all triplets (K, R, c), where K — nonterminal from
which the subtree rooted at the given node can be derived, R — the first rule
of the minimal derivation from K, c — the cost of this derivation. The labeling
process is performed as follows:

– for each leaf node labeled by a terminal α we add into the set for this node a
triplet (K, R, c (α)) for each rule R = K : α [c];

– for an intermediate node labeled by a terminal α with immediate successors
v1, . . . , vn we add into the set for this node a triplet (K, R, c(α, c1, . . . , cn)) for
each rule R = K : α (K1, . . . , Kn) [c] such that there is a triplet (Ki, Ri, ci)
in the labeling for the node vi; if there are different suitable rules for the same
nonterminal K then we choose that delivering minimal cost.

The second pass (reduce) is a top-down traversal which makes use of the
constructed labeling. The first rule of minimal derivation is that from the triplet
(S, R, c) for the root node (if there is no such a triplet, then there is no derivation
from S). This rule unambiguously determines nonterminals Ki for each direct
subtree of the root node and the process repeats.

To perform labeling we potentially need to try each rule of the grammar for
each node of the tree; given the fixed grammar this results in O (|R|) complexity,
where |R| is the number of rules (the size of the set of triples is limited by the
number of nonterminals which in turn is not greater than the number of rules).
Reduce is linear as well.
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4 Pretty-Printing via BURS

The reduction of the optimal pretty-printing problem to a BURS is based on the
following observations. Let w be the output width. Since the approach in question
deals with formats (rectangular boxes of a certain shape, see Sect. 2), the rendered
text is in turn always shaped as a box. Let parameters of this box are n, k, h, where
n — its width, k ≤ n — the length of its last line, h — its height. Under these
considerations an optimal rendering is that with the minimal h over all pairs (n, k)
such that k ≤ n ≤ w. So for a fixed width w we may try to render the text as no
more than w2 boxes and then simply choose the best one.

The document for pretty-printing can be considered as a tree built of primi-
tives text, indent, beside, above, and choice. The main question is whether
the rendering can be done compositionally by the tree structure (i.e. by reusing
renderings for the subtrees of each node). It can be done if we memoize for each
node and each pair (n, k), where k ≤ n ≤ w, the minimal h such that the sub-
tree rooted at that node can be rendered as a box with parameters n, k and h.
Having optimal renderings for each possible box shape for each subtree of some
node we can in turn calculate optimal rendering for each possible box shape for
the node itself et cetera. For each node of the tree we thus need to calculate
no more then w2 renderings which means that (under the assumption that w is
fixed) the number of renderings is linear on the number of nodes in the tree.

Once all these renderings are calculated in a bottom-up manner we may
then reconstruct the optimal one by a top-down traversal. For the root of the
tree we choose the rendering with the minimal height. This choice immediately
provides us with the renderings for immediate subtrees et cetera. Note that
generally speaking the optimal rendering for a tree is not necessarily combined
from optimal renderings for its subtrees.

These considerations boil down to the following BURS specification. Given
output width w we introduce a family of nonterminals T k

n for all k ≤ n ≤ w.
We are going to define a BURS grammar in such a way that a derivation of cost
h of some document tree from the nonterminal T k

n corresponds to the optimal
rendering of that document into a box with parameters n, k and h. Once we have
a grammar with this property the labeling stage will calculate all (interesting)
renderings while reduce stage will provide the optimal one.

The grammar in question can be constructed by the case analysis:

1. For a terminal node [text s]3 we have two cases:
– if |s| ≤ w (where |s| is the length of the string s) we introduce the single rule

T
|s|
|s| : [text s] with cost 1; for all other k, n �= |s| we have T k

n : [text s]

with cost ∞;
– if |s| > w then we have T k

n : [text s] with cost ∞ for all k, n.
Indeed, a (single-line) string of length |s| can only be rendered as a box with
parameters |s| (width), |s| (length of the last line) and 1 (height). All other
renderings are not possible — hence “∞” cost.

3 We use square brackets to denote multi-symbol terminals.
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2. For a node [indent m] we introduce two sets of rules:
(a) T k+m

n+m : [indent m] (T k
n ) with identity cost function for each n and k such

that n + m ≤ w and k ≤ n;
(b) T k

n : [indent m] (T i
j ) with cost ∞ for all other cases.

Clearly, shifting a box with parameters n, k and h by m positions to the
right transforms it into the box with parameters n + m, k + m, h. This box
represents an admissible rendering if n + m ≤ w (and hence k + m ≤ w).

3. For a node [above] we have the rule T k2

max(n1,n2)
: [above] (T k1

n1
, T k2

n2
) with the

cost function which sums the costs of both subtree derivations for each k1 ≤
n1 ≤ w and k2 ≤ n2 ≤ w. Indeed, when we combine boxes with parameters
n1, k1, h1 and n2, k2, h2 we obtain the box with parameters max(n1, n2), k2,
h1 + h2. Vertical combination of two admissible boxes is always admissible.

4. For a node [beside] we have the rule T k1+k2

max (n1, k1+n2)
: [beside] (T k1

n1
, T k2

n2
)

for each combination of n1, n2, k1, k2 such that k1 + k2 ≤ max (n1, k1 +
n2) ≤ w. The cost function for these rules calculates the sum of costs for
subtree derivations minus 1. This can be validated by elementary geometric
considerations.

5. Finally, for [choice] we have the rule T k
n : [choice](T k

n , T k
n ) for all k ≤ n ≤ w.

The cost function is minimum between two derivations for subtrees. Clearly,
between two layouts with the same shape but different height we have to
choose the shortest one.

To complete the construction we have to provide rules for the starting non-
terminal S. We can either add a rule S : r with identity cost function for each
right-hand side r of each rule constructed so far or introduce a chain rule S : T k

n

with identity cost function for each nonterminal T k
n (the latter requires a trivial

extension of BURS description presented in Sect. 3).
The number of nonterminals in the constructed grammar is O (w2); the num-

ber of rules, however, is O (w4) since there are nodes of degree 2 in the tree. So
our BURS implementation of the optimal pretty-printer works in linear time on
the number of nodes in the document tree for fixed width; the complexity on
width is of fourth degree. Clearly, given reduction can be scaled to document
construction primitives of arbitrary degree at the cost of exponential growth.

5 Implementation and Evaluation

We implemented our approach in Haskell as a pretty-printing combinator library4

Our implementation borrows some basic underlying types and functions from the
original library [2] with top-level types and combinators re-implemented.

In our implementation we do not follow BURS reduction literally; we do not
make any use of BURS grammar, sets of nonterminals or standard algorithm.
Instead, we calculate for each node of the document a map from pairs of integers
(n, k) to the best (“shortest”) format with the parameters n and k (if any). Thus,
an entry (n, k) in the map corresponds to the cost of optimal derivation from T k

n

4 http://github.com/anlun/polynomialPPCombinators.
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Table 2. Time of layout calculation (in seconds)

and the first rule for that derivation. At the top level we choose the least-cost
element from the map.

Since we are interested in the worst-case behavior we evaluate our implemen-
tation on the number of artificial automatically-generated documents. Given a
tree of type Ast, we then generate a document in a bottom-up manner. For each
intermediate node we combine its subtrees’ layouts both vertically and horizon-
tally and generate a choice between them in the following manner:

data Ast = T String | N String Ast Ast

astToDoc (T s) = text s

astToDoc (N s l r) = make beside ‘choice ‘ make above where

make f = foldl f (text s) (map astToDoc [l , r ] )

The results of comparison of our implementation against the original one are
shown on the Table 2. Here “Height” stands for the height of the initial tree,
“Nodes” — for the number of nodes in the generated document, “W” — for
the output width. For each width the left sub-column shows the running time
of the original implementation, while the right — of ours (in seconds). We can
see that starting from some combination of width/number of nodes the original

implementation was not able to calculate the layout. Table entries like show
the time when a stack overflow occurred.

Our implementation sometimes does not demonstrate linear behavior (as it
is expected since the number of nodes is virtually quadrupled from line to line).
We performed additional experiments and found that this phenomenon is due to
the irregular sparsity of calculated layouts for the larger widths. In other words,
for a small tree the number of non-empty entries in the layout maps is far below
the upper bound. As the tree grows this number also grows non-linearly until
the upper bound is reached.

6 Conclusions and Future Work

Despite our approach is better in asymptotic sense, the constant factor of w4

makes it still unusable in a direct form for large widths. Several ways to reduce
this factor may be considered as directions for future research. For example, we
may try to factorize output width into smaller number of values or to perform
auxiliary heuristic search to prevent too many layouts from being considered.

On the other hand, the presented approach has an interesting “relocation”
property: if we once calculated layouts for some tree, then we can instantly
pretty-print it in arbitrary context (e.g. from arbitrary position or as a subtree
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of arbitrary tree). This property opens some perspectives for incremental pretty-
printing in the context of IDEs.

Another issue which we have to mention is a conversion from AST into docu-
ments. Generally speaking the direct conversion might provide a document of an
exponential size since at each node we might try to choose from various compo-
sitions (“beside” or “above”) of layouts of its descendants. While this does not
compromise our approach, it still has practical impact. To cope with this issue
an additional level of memoization is needed to prevent shared document nodes
from being processed several times. The original set of combinators [2] seem to
face the same problem.
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