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Abstract

We present an implementation of the relational programming
language miniKanren as a set of combinators and syntax extension
for OCaml. The key feature of our approach is polymorphic unifica-
tion, which can be used to unify data structures of almost arbitrary
types. In addition we provide a useful generic programming pat-
tern to systematically develop relational specifications in a typed
manner, and address the problem of relational and functional code
integration.

1. Introduction

Relational programming [1] is an attractive technique, based on
the idea of constructing programs as relations. As a result, rela-
tional programs can be “queried” in various “directions”, making it
possible, for example, to simulate reversed execution. Apart from
being interesting from purely theoretical standpoint, this approach
may have a practical value: some problems look much simpler, if
they are considered as queries to relational specification. There is
a number of appealing examples, confirming this observation: a
type checker for simply typed lambda calculus (and, at the same
time, type inferencer and solver for the inhabitation problem), an
interpreter (capable of generating “quines” — programs, produc-
ing themselves as result) [4], list sorting (capable of producing all
permutations), etc.

Many logic programming languages, such as Prolog, Mercury',
or Curry” to some extent can be considered as relational. We have
chosen miniKanren® as model language, because it was specifically
designed as relational DSL, embedded in Scheme/Racket. Being
rather a minimalistic language, which can be implemented with just
a few data structures and combinators, miniKanren found its way
in dozens of host languages, including Haskell, Standard ML, and
OCaml.

There is, however, a predictable glitch in implement-
ing miniKanren for a strongly typed language. Designed in
a metaprogramming-friendly and dynamically typed realm of
Scheme/Racket, original miniKanren implementation pays very
little attention to what has a significant importance in (specifi-
cally) ML or Haskell. In particular, one of capstone constructs of
miniKanren — unification — has to work for different data struc-
tures, which may have types, different beyond parametricity.

There are a few ways to overcome this problem. The first one is
simply to follow the untyped paradigm and provide unification for
some concrete type, rich enough to represent any reasonable data
structures. Some Haskell miniKanren libraries* as well as existing

"https://mercurylang.org
Zhttp://www-ps.informatik.uni-kiel.de/currywiki
3http://minikanren.org

“https://github.com/JaimieMurdock/HK, https://github.com/
rntz/ukanren
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OCaml implementation’ take this approach. As a result, the original
implementation can be retold with all its elegance; relational spec-
ifications, however, become weakly typed. Another approach is to
utilize ad hoc polymorphism and provide type-specific unification
for each “interesting” type; Molog® and MiniKanrenT’, both for
Haskell, can be mentioned as examples. While preserving strong
typing, this approach requires a lot of “boilerplate” code to be writ-
ten, so some automation, for example, using Template Haskell®, is
desirable. There is, actually, another potential approach, but we do
not know, if anybody tried it: to implement unification for generic
representation of types as sum-of-products and fixpoints of func-
tors [10, 11]. Thus, unification would work for any types, for which
representation is provided. We assume that implementing represen-
tation would require less boilerplate code.

As follows from this exposition, typed embedding of miniKan-
ren in OCaml can be done with a combination of datatype-generic
programming [8] and ad hoc polymorphism. There are a number of
generic frameworks for OCaml (for example, [9]). On the other
hand, the support for ad hoc polymorphism in OCaml is weak;
there is nothing comparable in power with Haskell type classes,
and despite sometimes object-oriented layer of the language can be
used to mimic desirable behavior, the result as a rule is far from
satisfactory. Existing proposals (for example, module implicits [5])
require patching the compiler, which we tend to avoid.

We present an implementation of a set of relational combinators
in OCaml, which, technically speaking, corresponds to pKanren [2]
with disequality constraints [3]; syntax extension for “fresh” con-
struct is added as well. The contribution of our work is as follows:

1. Our implementation is based on polymorphic unification,
which, like polymorphic comparison, can be used for almost
arbitrary types. The implementation of polymorphic unification
uses unsafe features and relies on intrinsic knowledge of run-
time representation of values; we show, however, that this does
not compromise type safety. Practically, we applied purely ad
hoc approach since the features, which would provide less ad
hoc solution, are not yet integrated into the mainstream lan-
guage.

2. We describe a uniform and scalable pattern for using types for
relational programming, which helps in converting typed data
to- and from relational domain. With this pattern, only one
generic feature (“map/morphism/Functor”) is needed, and
thus virtually any generic framework for OCaml can be used.
Despite being rather a pragmatic observation, this pattern, as
we believe, would lead to more regular and easy to maintain
relational specifications.

Shttps://github.com/lightyang/minikanren-ocaml
®https://github.com/acfoltzer/Molog
"https://github.com/jvranish/MiniKanrenT
8https://wiki.haskell.org/Template_Haskell
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3. We provide a simplified way to integrate relational and func-
tional code. Our approach utilizes well-known pattern [6, 7] for
variadic function implementation and makes it possible to hide
refinement of answers phase from an end-user.

The rest of the paper is organized as follows: in the next section
we discuss polymorphic unification, and show, that standard unifi-
cation with triangular substitution respects typing. Then we present
our approach to handle user-defined types by injecting them into
logic domain. Next section describes top-level primitives and ad-
dresses the problem of relational and functional code integration.
Then, we present a complete example of relational specification,
written with the aid of our library. The final section concludes.

We expect from reader some familiarity with basic concepts
behind original miniKanren implementation as well as principles
of relational programming.

2. Polymorphic Unification

We consider it rather natural to employ polymorphic unification
in the language, already equipped with polymorphic comparison —
a convenient, but somewhat disputable’ feature. Like polymorphic
comparison, polymorphic unification performs traversal of values,
exploiting intrinsic knowledge of their runtime representation. The
undeniable benefit of this solution is that in order to perform unifi-
cation for user types no “boilerplate” code is needed. On the other
hand, all pitfalls of polymorphic comparison are inherited as well;
in particular, unification can loop for cyclic data structures and does
not work for functional values. Since we generally do not expect
any reasonable outcome in these cases, the only remaining prob-
lem is that the compiler is incapable of providing any assistance in
identifying and avoiding them. Another drawback is that the imple-
mentation of polymorphic unification relies on runtime representa-
tion of values and have to be fixed every time the representation
changes. Finally, as it is written in unsafe manner using Obj inter-
face, it has to be carefully developed and tested.

An important difference between polymorphic comparison and
unification is that the former only inspects its operands, while the
results of unification are recorded in a substitution (mapping from
logical variables to terms), which later is used to refine answers and
reify constraints. So, generally speaking, we have to show, that no
ill-typed terms are constructed as a result.

Polymorphic unification is introduced via the following func-
tion:

val unify : « logic — « logic — subst option —
subst option

where “ologic” stands for the type c, injected into the logic
domain, “subst” — for the type of substitution. Unification can
fail (hence “option” in the result type), is performed in the context
of existing substitution (hence “subst” in the third argument) and
can be chained (hence “option” in the third argument). Note,
the type of substitution is not polymorphic, which means, that
compiler completely looses the track of types for values, stored in
a substitution. These types are recovered later during refinement of
answers.

To justify the correctness of unification, we consider a set of
typed terms, each of which has one of two forms

" | CT(, .. )
where z7 denotes a logical variable of type 7, C” — some con-

structor of type 7, ¢;° — some terms of types 7;. We reflect by
t1[t5] the fact of t5 being a subterm of ¢], and assume, that p is

9See, for example, https://blogs.janestreet.com/the-perils-
of-polymorphic-compare

unambiguously determined by ¢1, 7, and a position of ¢z “inside”
t1.

Outside unification the compiler maintains typing, which
means, that all terms, subterms, and variables agree in their types
in all contexts. However, as our implementation resorts to unsafe
features, we have to manually repeat this work for unification code.

We argue, that the following three invariants are maintained for
any substitution s, involved in unification:

1. if ti[z"] and ¢3[x”] — two arbitrary terms (in particular, ¢; and
t> may be the same), bound in s and containing occurrences
of variable z, then p = 7 (different occurrences of the same
variable in s are attributed with the same type);

2. if (s x7) is defined, then (s z7) =t” (a substitution always
binds a variable to a term of the same type);

3. each variable in s preserves its type, assigned by the compiler
(from the first two invariants it follows, that this type is unique;
note also, that all variables are created and have their types
assigned outside unification, in a type-safe world).

The initial (empty) substitution trivially fulfills these invariants;
hence, it is sufficient to show, that they are preserved by unification.

The following snippet presents the implementation of unifica-
tion with triangular substitution in only a little bit more abstract
form, than actual code (for example, “occurs check” is omitted):

1 let rec walk s = function
> | 27 when z € dom(s) — walk s (s z)”
3 | tT =t

s let rec unify ¢] t3 = function

6 | None — None

7 | Some s as sub—

3 match walk s t;, walk s 2 with
9 | 7, x5 when x1 = z2 — sub

x], (t5)7 — Some (s[z1 < t5])

(t1)7, x5 — Some (s[wa2 « t1])

CT(t, ..., tF), CT(pTt, ..., p") —

13 unify ¢* p;* (.. (unify ¢7' pi* sub)..)
14 | -, _— None

|
" |
|

Type annotations, included in the snippet above, can be justified
by the following reasonings'’:

1. Line 2: the type of (s z7) is 7 due to invariant 2; hence,
the type of walk result coincides with the type of its second
argument (technically, an induction on the number of recursive
invocations of walk is needed).

2. Line 9: the substitution is left unchanged, hence all invariants
are preserved.

3. Line 10 (and, symmetrically, line 11): first, note, that (s x1)
is undefined (otherwise walk would not return x1). Then, x;
and t5 have the same type, which justifies the preservation of
invariant 2. Finally, either 1 = ¢1 (and, then, 7 is the type of
x1, assigned by the compiler), or x; is retrieved from s with
type 7 — both cases justify invariants 1 and 3. The same applies
to the pair 5 and t2.

4. The previous paragraph justifies the base case for inductive
proof on the number of recursive invocations of unify.

Function unify is not directly accessible at the user level; it
used to implement both unification (“===") and disequality (“=/=")
goals. The implementation generally follows [3].

10We omit verbal description of unification algorithm; the details can be
found in [2].
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3. Logic Variables and Injection

Unification, considered in Section 2, works for values of type
a logic. Any value of this type can be seen as either value of type
a, or logical variable of type . The type itself is made abstract, but
its values can be uncovered after refinement (see Section 4).

Free variables solely can be created using “fresh” construct of
miniKanren. Note, since the unification is implemented in untyped
manner, we can not use simple pattern matching to distinguish
logical variables from other logical values. Special attention was
paid to implement variable recognition in constant time.

Apart from variables, other logical values can be obtained by
injection; conversely, sometimes logical value can be projected to
a regular one. We supply two functions'! for these purposes

val (1) : a— « logic
val (J) : o logic— «

As expected, injection is total, while projection is partial. Using
these functions and type-specific “map”, which can be derived
automatically using a number of existing frameworks for generic
programming, one can easily provide injection and projection for
user-defined datatypes. We consider user-defined list type as an
example:

type («, B) list = Nil | Cons of a * f3

type a glist = (a, o glist) list
type a 1llist = (o logic, a llist) list logic

let rec inj_list 1 = T(mapjigt (1) inj_list 1)
let rec prj_list 1 = mapjjgt () prj_list ({ 1)

Here “1ist” is a custom type for lists; note, that it is made more
polymorphic, than usual — we abstracted it from itself and made
it non-recursive (pragmatically speaking, it is desirable to make a
type fully abstract, thus logic variables can be placed in arbitrary
positions).

Then we provided two specialized versions — “glist”
(“ground” list), which corresponds to regular, non-logic lists, and
“11ist” (“logical” list), which corresponds to logical lists with
logical elements. Using a single type-specific function mapqjgt,
we easily provided injection (of type o glist — « 1llist)and
projection (of type o 11ist — « glist).

In context of these definitions, now we can implement relational
list concatenation, which is one of first-step examples of miniKan-
ren programming:

let rec append’ x y xy =
conde |[
(x == 1 Nil) &&& (xy = y);
fresh (h t ty)
(x == 1(Cons (h, t))
(xy == 1(Cons (h, ty))
(append® t y ty)
]

Note, in the definition of append® we used only default injec-
tion (“1”’). Customized version most likely would appear in some
top-level goal, for example:

(fun q — append® (inj_list [1; 2; 3])
(inj_list [4; 5; 6])
q

11«inj” and “prj” in concrete syntax.

4. Refinement and Top-Level Primitives

The result of a relational program is a stream of substitutions,
each of which represents a certain answer. As a rule, a substitution
binds many intermediate logical variables, created by “fresh” in
the course of execution. A meaningful answer has to be refined.

In our implementation refinement is represented by the follow-
ing function:

val refine : subst — « logic — « logic

This function takes a substitution and a logical value and recur-
sively substitutes all logical variables in that value w.r.t. the sub-
stitution until no occurrences of bound variables are left. Since in
our implementation the type of substitution is not polymorphic,
refine is also implemented in an unsafe manner. However, it is
easy to see, that refine does not produce ill-typed terms. Indeed,
all original types of variables are preserved in a substitution due
to invariant 3 from Section 2. Unification does not change unified
terms, so all terms, bound in a substitution, are well-typed. Hence,
refine always substitutes some subterm in a well-typed term with
another term of the same type, which preserves well-typedness.

In addition to performing substitutions, refine also reifies dis-
equality constrains. Reification attaches to each free variable in a
refined term a list of refined terms, describing disequality constraint
for that free variable. Note, disequality can be established only for
equally typed terms, which justifies type-safety of reification. Note
also, additional care has to be taken to avoid infinite looping, since
refinement and reification are mutually recursive, and refinement of
a variable can be potentially invoked from itself due to a chain of
disequality constraints.

After refinement, the content of a logical value can be inspected
via the following function:

val destruct : « logic —
[ ‘Var of int * « logic list | ‘Value of «]

Constructor ‘Var corresponds to a free variable with unique
integer identifier and a list of terms, representing all disequality
constraints for this variable. These terms are refined as well.

We did not make refine accessible for an end-user; instead we
provided a set of top-level combinators, which should be used to
surround relational code and perform refinement in a transparent
manner. Note, from pragmatic standpoint only variables, supplied
as arguments for the top-level goal, have to be refined (the original
miniKanren implementation follows the same convention).

The toplevel primitive in our implementation is run, which
takes three arguments. The exact type of run is rather complex
and non-instructive, so we better describe the typical form of its
application:

rannn (fun l;...01, > G) (fun a1...an, — H)

Here 7 stands for numeral, which describes the number of pa-
rameters for two other arguments of run, [y ...l, — free log-
ical variables, G — a goal (which can make use of [ ...l,),
ai ...an — refined answers for [; . .. l,,, respectively, and, finally,
H — a handler (which can make use of a1 ...an). The types of
l1...1l, are inferred from G, and the types of a; ...a, are in-
ferred from types of [y ...l,: if [; has type t logic, then a; has
type t logic stream. In other words, user-defined handler takes
streams of refined answers for all variables, supplied to the top-
level goal. All streams a; contains coherent elements, so they all
have the same length and n-th elements of all streams correspond
to the n-th answer, produced by the goal G.

There are a few predefined numerals for one, two, etc. argu-
ments (called, by tradition, q, qr, qrs etc.), and a successor func-
tion, which can be applied to existing numeral to increment the
number of expected arguments. The technique, used to implement
them, generally follows [6, 7].



5. An Example

Here we present an example of relational specification, written
with the aid of our library. For this example we take list sorting;
specifically, we present sorting for lists of natural numbers in Peano
form since our library already contains built-in support for them.
However our example can be easily extended for arbitrary (but
linearly ordered) types.

List sorting can be implemented in miniKanren in a variety of
ways — virtually any existing algorithm can be rewritten relation-
ally. We, however, try to be as much declarative as possible to
demonstrate the advantages of relational approach. From this stand-
point, we can claim, that sorted version of empty list is empty list,
and sorted version of non-empty list is its smallest element, con-
catenated with sorted version of list, containing all its remaining
elements.

The following snippet literally implements this definition:

let rec sort’ x y = conde [
(x == 1Nil) && (y == 1Nil);
fresh (s xs xs’)
(y T(Cons (s, xs7)))
(sort? xs xs’)
(smallest® x s xs)

1

The meaning of the expression
smallest® x s xs

is

“s” is the smallest element of a (non-empty) list “x”, and
“xs” is the list of all its remaining elements.

Now, smallest’ can be implemented using case analysis (note,
that “1” here is a non-empty list):

let rec smallest® 1 s 1’ = conde [
(1 == 1(Cons (s, TNil))) &&& (1’ == 1Nil);
fresh (h t s’ t’ max)
(1’ == 1(Cons(max,t’)))
(1 == t(Cons(h,t)))
(minmax® h s’ s max)
(smallest® t s’ t’)
]

Finally, we implement relational minimum-maximum calcula-
tion primitive:

let minmax® a b min max = conde [
(min == a) &&& (max === b) &&& (1le’ a b);
(max == a) &&& (min === b) &&& (gt° a b)]

Here “1e°” and “gt°” are built-in comparison goals for natural
numbers in Peano form.

Having relational sort®, we can implement sorting for regular
integer lists:

let sort 1 =
run q (sorto @@ inj_nat_list 1)
(fun gs — prj_nat_list @@ Stream.hd gs)

Here Stream.hd is a function, which takes a head from a lazy
stream of answers.

It is interesting, that since sort? is relational, it can be used to
calculate the list of all permutations for a given list. Indeed, each
permutation, being sorted, results in the same list. So, the problem
of finding all permutations can be relationally reformulated into the
problem of finding all lists, which are converted by sorting into the
given one:

let perm 1 = map prj_nat_list @@
run q (fun q — fresh (r)
(sort? (inj_nat_list 1) r)
(sort’ q r)
)
(Stream.take "n:(fact @@ length 1))

Note, for sorting original list we used exactly the same primi-
tive. Note also, we requested exactly fact @@ length 1 answers;
requesting more would result in infinite search for non-existing an-
swers. This concludes our example.

6. Conclusion

We presented strongly typed implementation of miniKanren for
OCaml. Our implementation passes all tests, written for miniKan-
ren (including those for disequality constraints); in addition we im-
plemented many interesting relational programs, known from the
literature. We claim, that our implementation can be used both as a
convenient relational DSL for OCaml and an experimental frame-
work for future research in the area of relational programming.

The source code of our implementation is accessible from
https://github.com/dboulytchev/0Canren.

We also want to express our gratitude to William Byrd, who
infected us with relational programming, and for the extra time he
sacrificed as both our tutor and friend.
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