
Cooking Raw Types in Java

Dmitri Boulytchev1 and Eugene Vigdorchik2

1 St.Petersburg State University, Universitetskii pr., 28
198504, St.Petersburg, Russia,

db@tepkom.ru,
2 JetBrains.com, Kantemirovskaya ul., 2,

197342, St.Petersburg, Russia
ven@intellij.com

Abstract. Recently released version 5.0 of the Java programming lan-
guage introduces among other new language features the construct of
generic classes. This language extension allows the classes to declare
type parameters and the users to instantiate those classes giving explicit
types as values for those parameters. To facilitate migration to Java 5.0,
existing legacy code using parameterless instantiations is still valid with
the new compiler, though this does not guarantee type safety. We discuss
the problem of automatic conversion of existing code to use generic types
and present a technique based on type inference. The evaluation of the
approach performed on some real-world industrial projects shows that
it is superior to previously reported approaches in reliability while also
delivering competitive quality and performance.

1 Introduction

For many years Java programmers have been enjoying the ability to exploit the
numerous libraries bundled with the compiler. Probably the most frequently
used of those is the Collections framework, that saved programmers from reim-
plementing basic data structures. However, due to the weakness of the Java type
system, collections were declared to contain any objects, and users were forced
to cast objects from the collection to the desired type, essentially undermining
type safety of the program.

In Java 5.0 generic, or parameterized, classes are introduced to cope with this
shortcoming. Generic class may declare type parameters that have the scope of
this class; a class may have more than one parameter. Generic class may then
be instantiated for various actual types of its parameters giving the compiler the
opportunity to effectively typecheck on a per-instantiation basis.

For compatibility reasons any generic class may be used in non-
parameterized, or raw, form. In this case all its type parameters are considered
to be bound to some virtual “raw argument” type, hereafter referred to as a
“bottom type” (⊥). This type does not have any representation in Java and
may appear only as an invisible argument of raw type instantiation.

Raw types allow to use all of the legacy non-generic code together with
reworked generic standard libraries without conversion. On the other hand, con-
version is desirable since generic code has a more rigorous type structure and
exposes more clear interfaces. In this paper we present a technique for auto-
matic refactoring of non-generic code to a generic equivalent. This technique
appeared to be tractable and has been implemented as a dedicated refactoring
in the IntelliJ IDEA 5.03 development environment.

2 Generic and Raw Types, Generification and Cooking

Throughout this section we give an overview of generic classes and types in
Java 5.0 and discuss various aspects of converting existing code to generic-aware
form.

To illustrate the need for generic classes consider for example the following
imaginary set declaration:

class Set {

void put (Object value) {...}

boolean contains (Object x) {...}

Object anyOf () {...}

}

The client of the Set class who knows to put only Integers in the set, but
still has to cast the result returned by anyOf call to Integer which, if the user
is wrong, results in a runtime exception. It seems reasonable to allow the user
to specify explicitly what kind of objects are stored in the collection, giving
the compiler more knowledge about the program and making the above cast
redundant.

In Java 5.0 the above class definition would be rewritten in the following
manner:

class Set<X> {

void put (X x) {...}

boolean contains (X x) {...}

X anyOf () {...}

}

Here Set is declared as a generic class with one type parameter X. A generic
class may be instantiated for various actual types of its parameters in the fol-
lowing manner:

Set<Integer> s = new Set<Integer> ();

s.put (new Integer(3)); // Ok

s.put (Boolean.TRUE); // type error

3 http://www.jetbrains.com/idea

The variable s is declared to be of type Set<Integer>; now the compiler is
able to enhance the type checking.

To provide compatibility with legacy non-generic code non-parameterized
form of generic types is also available:

Set s = new Set ();

s.put (3); // Ok

s.put (true); // Ok

Here the variable s has the type “raw” Set, or Set parameterized by virtual
”bottom” type (⊥); since any reference type can be converted to bottom type,
this code is type-safe.

Moreover, it is allowed, though discouraged, to mix generic and raw types:

Set<String> strings = s; //compiler warning

String str = strings.anyOf(); //OK at compile time, but exception at runtime

Here a special ”unchecked” warning is issued by the compiler, signalling that
the program is not guaranteed to be runtime safe. Once there are no unchecked
warnings, the program is guaranteed to produce no cast exceptions when evalu-
ating expressions of types of generic classes.

An important feature of generic type system, that is sometimes missed by
the users, and which clearly affects generification, is the invariance of types
with regard to their type arguments, i.e. Set<Integer> is not a subtype of
Set<Object> even though Integer<:Object.

Local type inference is another feature that has to be taken into account: in
Java 5.0 the type of expression may generally depend not only on types of its
subexpressions, but also on the type of the outer context. For example, in the
following example

<T> List<T> emptyList () {...}

List<String> s = emptyList ();

List<Integer> s = emptyList ();

the return type of the first call to emptyList is List<String> while the
second call returns List<Integer>. This example also demonstrates the presence
of generic methods — the methods with their own type parameters.

Several aspects of converting legacy code to use generics exist. For example
one may try to rewrite the code by introducing type parameters to methods
and classes. In this paper we consider a simpler problem — the problem of
“cooking” raw declarations to their parameterized form by introducing safe type
parameters instantiation. From now on we will use the terms “generification”
and “cooking” interchangeably.

A possible function to measure the results of generification is the number of
unchecked conversions removed; unfortunately in some cases this goal can not

be achieved by simply adding type arguments for raw declarations. For exam-
ple, Collections class contains raw field EMPTY LIST to maintain compatibility
with previously written code. To remove unchecked conversions one will need
to replace occurences of that field with its generic equivalent — the call to the
generic method emptyList ().

Another good criterion for generification is the number of removed casts.
Since a cast may be safely removed if the type of cast expression is a subtype of
cast type, the number of removed casts reflects the “distance” between cooked
and expected types of declarations.

Finally one may try to generify as much declarations as possible; however
this intention sometimes may result in meaningless typing; for example given
the declaration

List x;

that is never used the pragmatic considerations tells us to leave this declara-
tion raw since no information is available about the type of its argument; however
formally speaking it may be cooked to, say, List<Object> and so provide better
results.

3 Related Work

The concept of generics traces its roots back to the works of [7, 1], and the
earlier works on virtual types[6]. The final specification of Java 5.0 language
was recently published[5]. This final standard also introduces wildcard types,
a restricted form of existentials, which if incorporated into the cook process is
likely to increase the number of generified items.

The refactoring of non-generic legacy code to use generics has been adressed
by a number of authors. In [3, 8] the problem of deriving type constraints from
the program is addressed. Unlike our work based on type constraints, authors
seek for a solution to the points-to analysis for the generified items, requiring
context-sensitive version for a more precise inference, and obtain the typing from
the computed sets. The implementation described, however, is able to generify
only the usages of standard Collections classes; the restriction not imposed by
our refactoring.

Dincklage and Diwan[2] address the problem of simultaneous conversion of
non-generic classes and their instantiations. While this task is more ambitious
than ours, the pragmatic value of automatically adding type parameters to the
user code is arguable.

Duggan’s work [4] resembles ours, in the sense it is also based on successively
simplifying type constraints. However the author deals with a specific subset of
Java and provides no results, so no comparison is possible.

The first industrial implementation of “Generify” refactoring was done in
CodeGuide IDE by OmniCore4. However they provided no details of the algo-
rithm, and the empirical study of this refactoring shows poor results for both

4 www.omnicore.com

the little number of raw items generified, and producing incompilable code. The
next implementation appeared in IntelliJ IDEA 4.0, but that one used an ad hoc
graph representation of constraints, and, in general, did not perform well either.

The recently released Eclipse 3.15 seems to provide the best results of all
aforementioned works, so we measure the results of applying proposed algorithm
against their implementation.

4 Setting the Scene

We consider each raw type as a generic type parameterized by type variables. The
actual values for the type variables may then be deduced by taking into account
various constraints that the program introduces on them. Informally speaking
each constraint expresses the type dependency caused by a certain fragment of
the cooked program. Given a set of such constraints we then resolve it using a
properly developed system of inference rules. As a result we obtain a set of type
variable assignments (hereafter called binding). As we will see shortly, such a
constraint system may actually be reduced to many different bindings. Several
issues are important for usability of the approach:

• all possible solutions of the constraint system must denote type-correct vari-
able assignment;

• the inference algorithm has to be computationally tractable;

• the algorithm has to allow fine-tuning to infer bindings with various desirable
properties.

Now we discuss some approaches to build the constraint system and infer
solution bindings.

One trivial kind of dependency is the subtype relation (<:). For example,
given an assignment one would expect that the type of its source is a subtype
of the type of its destination. Thus for the construct src = dst, constraint
typeOf(dst) <: typeOf(src) has to be added to the constraint system. Similar
subtyping constraints need to be introduced by method invocations and other
constructs. However it turns out that subtyping relation is not sufficient to de-
scribe all available safe typings of the program.

For example, we need to take overriding of methods during inheritance into
account. Given the declarations

class A {

void f (Set x) {...}

}

class B extends A {

void f (Set y) {...}

}

5 www.eclipse.org

we cannot actually cook types of x and y independently — in other case we
may, for example, cook type of y into Set<Integer> and leave x raw, in which
case method B.f will stop override A.f.

Another issue is the accessibility of declarations. Consider the following ex-
ample:

public class Escaping {

static List x;

}

class Scope {

private class Woof {...}

void foo() {

Escaping.x.add(new Woof());

}

}

Since class Woof is not accessible at the declaration site of x, it is not possible
to convert this declaration into generic form.

Yet another problem arises from the fact that there are no partially-raw
types in Java. This means that for classes with multiple type parameters, if
during cooking one of them falls into bottom, then all others have to do so. In
the following example

Hashtable x;

List y;

y.add(x.elements().nextElement());

y.add("");

neither x, nor y can be cooked since the first argument of x is left unbound.
Another important point is dealing with casts. On one hand a type cast

expression (T) expr only succeeds at run time if the type of expr appears to
be a subtype of T; from this point of view one may conclude that the cast would
introduce the constraint typeOf(expr) <: T . On the other hand, it is enough for
typeOf(expr) to be convertible [5] to T for the cast to be type-correct at compile
time. Convertibility is a weaker constraint than the subtyping and so taking it
into account may result in different typing. Consider the following example:

List x;

String s = (String) x.iterator().next();

Integer i = (Integer) x.iterator().next();

If we treat these two casts as subtype constraints then no typings exist since
there is no type that is simultaneously subtype for both String and Integer.
On the other hand at least three types (Object, Cloneable and Serializable)

are convertible to both String and Integer. This example seems a bit artificial,
but a similar situation may appear when, for example, the same iterator is used
to access collections with different possible parameterizations.

5 Inferring the Types

In this section we informally describe the type inference system used in our
approach. This system allows us to infer type-safe parameterizations for some
restricted version of Java 5.0 type system. The main restrictions are as follows:

• we consder cast expression to contribute subtyping constraint on type of
casted expression rather than convertable constraint;

• we do not allow assignment and method invocation conversions[5] of raw
type to parameterized type.

The idea behind our approach to generification is quite simple: given a set of
constraints, we try to reduce it by choosing arbitrary ones and building a local
solution for it; then we combine local solutions into a global one. Since many
different solutions may exist for the same constraint system, we generally have
non-deterministic type inference rules that may deliver different local solutions
for the same constraint. The latter means that we have, in general, an inference

tree; the root of which corresponds to the initial system, interior nodes corre-
spond to partial solutions, and leaves relate to final solutions or contradictions
(some local solutions may contradict others, in which case the inference pro-
cess stops.) If any correct typing corresponds to some solution of the constraint
system, and if type inference rules are able to infer any solutions, then we may
enumerate all typings and choose any desirable one. Of course this very approach
seems to be intractable due to exponential growth of the number of solutions;
however it turns out that even for large projects (up to 100000 lines of code)
it delivers results in acceptable time; we also developed a simple heuristic that
dramatically reduces the running time.

Since the formal description of the type inference system is outside the scope
of this paper, we demonstrate the basic rules with the following example:

List x;

List y;

List z;

x.add(y);

z = (List) x.iterator().next();

y.add("");

The constraint system for the example is as follows:

List 〈γ〉 <: List 〈δ〉
List 〈β〉 <: α

α <: List 〈δ〉
String <: β

Here the type variables α, β, γ, δ correspond to type parameters of x, y, z
and cast expression respectively.

Now we can start reducing this system. First of all we choose the first con-
straint List 〈γ〉 <: List 〈δ〉. Generally speaking there are an infinite number of
solutions for this constraint, but all solution space may be represented by two
relations on type variables γ and δ. The first relation says that δ and γ have
to denote the same type. We may express this fact by substitution δ → γ. The
second says that if γ is bound to bottom type (γ → ⊥) then the constraint is sat-
isfied regardless the binding of δ. In other words we may replace the constraint
under considerations by one of two bindings (δ → γ or γ → ⊥). These bindings
form first two possible local solutions. Now we may replace the initial system
with two derived ones: they are obtained by removing the first constraint and
applying the corresponding variable substitutions to types of other constraints.
These two sysems are shown below:

δ → γ

List 〈β〉 <: α

α <: List 〈γ〉
String <: β

and

γ → ⊥
List 〈β〉 <: α

α <: List 〈δ〉
String <: β

Consider the first two constraints of the first system: List 〈β〉 <: α

and α <: List 〈γ〉. Clearly they both may be satisfied simultaneously iff
List 〈β〉 <: List 〈γ〉. Again, we have two choices: β → γ or γ → ⊥. The first
of them results in the system

δ → γ

β → γ

α → List 〈γ〉
String <: γ

and the second results in the system

δ → ⊥
γ → ⊥

List 〈β〉 <: α

String <: β

Note that we apply the local solution not only to the residual system, but
also to a partial solution.

Again consider the system derived first at the previous step. Here we have
only the constraint String <: γ. The only possible solutions here are γ → String,
γ → Comparable, γ → Serializable or γ → Object; the most promising is of
course the first one. Applying it to the partial solution we have the binding

δ → String

β → String

α → List 〈String〉
γ → String

that represents the first possible solution of the initial system. The other
solutions may be deduced by considering other branches of the inference tree.

Now we may summarize the main steps of the inrefence algorithm:

• We maintain the partial solution and residual system. Initially the partial
solution is empty and the residual system is taken to be the one obtained
from the program at previous step.

• At each step we try to “pump” some constraints from the residual system
into the partial solution: we describe all possible solutions of these separated
constraints by set of disjoint bindings and then incorporate these bindings
into the partial solution.

• When we end up with an empty residual solution, then partial solution is
the solution of the initial system; if none of the constraints may be solved
then we give up.

The type inference system developed allows to obtain all possible solutions of
the system regardless of the order of rule application. However the compexity of
this algorithm is exponential to the number of constraints. On many relatively
small projects (up to 10 000 lines of code) it is still appropriate, while generifi-
cation of large projects (up to 100 000 lines of code) may take up to ten hours.
Fortunately we have found a simple heuristic that allows us to dramatically
reduce the complexity of the algorithm.

As one may notice one of the main sources of exponential growth is the rule
for solving constraint of the form C 〈α〉 <: C 〈β〉, because we have to consider two
bindings α → β and β → ⊥. Our heuristic allows us to drop the latter solution
in most cases. Namely, we drop it if variable β does not occur elsewhere in the
residual system. Experimenting shows that using this heuristic we lose no more
than 10 percents of generified items while running time becomes comparable to
that reported in previous works. All results reported in the following section are
given with respect to this heuristic.

6 Implementation and Results

We measured the obtained results against all results reported in papers earlier,
and found our implementation superior to them, both producing more generic

items, and eliminating more casts. Recently released Eclipse 3.1 framework,
however, also provides best results in comparison to that papers; despite the
absence of exact details on algorithm used by Eclipse we compared our results
with it.

In table 1 the results of the application of our algorithm and the “Infer type
arguments” refactoring presented by Eclipse [9] are given for benchmarks used
by other authors. The comparison shows that the Eclipse implementation usu-
ally outperforms ours in terms of time required to perform the refactoring. This
can be explained by the context-sensitive nature of the algorithm they use [8]:
having the points-to information should allow to reduce the set of possible solu-
tions. Another observation showed that Eclipse refactoring quite often produces
incompilable code (those benchmarks are marked by “∗”), so it is likely that
their implementation does not take all necessary constraints into account. For
that benchmarks all errors were fixed manually prior to measuring the quality
of the results.

The comparison of results in the first two columns shows that our algorithm
outperforms Eclipse implementation for JavaCUP removing by 80 percent more
casts, while Eclipse performs better for ANTLR. The latter result is caused by
an iterator variable used to iterate over two differently typed collections. While
context-sensitive analysis can detect that the variable is pointing to different col-
lections at different places, our inference algorithm deduces raw type for iterator
which causes the both collections to remain raw as well. If we split the iterator
variable into two, our implementation produces more generic items than Eclipse.
Since the code without such variable reuse is also easier to read, we assume the
user to eliminate such reuse either by hand, or with the use of IDE provided
inspection before running “Generify” refactoring.

Benchmark LOC Generic Items Introduced Casts Removed Refactoring Duration
Intellij IDEA Eclipse Intellij IDEA Eclipse Intellij IDEA Eclipse

∗JavaCUP v10k6 11048 77 84 461 257 0:40 0:7
∗ANTLR 2.7.57 54993 122 172 73 112 1:30 0:10
htmlparser 1.58 40722 204 185 72 61 0:36 0:15

JUnit 3.8.19 5217 80 82 21 21 0:7 0:7
∗telnetd 2.010 6866 44 43 33 33 0:5 0:2

∗JLex11 7841 50 45 56 50 0:8 0:5
∗hibernate 2.112 88184 1160 1192 157 157 4:35 0:56

Fig. 1. Evaluation Results

7 Conclusion and Future Work

The solution to generification problem based on global type inference is pre-
sented. This approach is quite simple and easy to implement, while it naturally
leads to obtaining type-safe solution. The number of generified items is measured
to usually exceed the numbers previously reported. Moreover, in spite of the de-
veloped algorithm being exponential, our experiments show, that its running
time is acceptable for use as a refactoring.

As a possible direction of the future work, we are planning to reformulate
the constraint system, so that casting a raw item does not impose subtype,
but rather a weaker “type is convertible” [5] constraint. To deal with context-
insensitive nature of our system, another interesting experiment would be to
formulate the constraint system for the SSA form [10] of the program.

References

1. Gilad Bracha, Martin Odersky, David Stoutamire, Philip Wadler. Making the fu-
ture safe for the past: adding genericity to the Java programing language. ACM
SIGPLAN Notices, Proceedings of the 13th ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applications, Vol. 33, Issue 10,
1998.

2. Daniel von Dincklage, Amer Diwan. Converting Java Classes to Use Generics. ACM
SIGPLAN Notices, Proceedings of the 19th annual ACM SIGPLAN Conference
on Object-oriented programming, systems, languages, and applications, Vol. 39,
Issue 10, 2004.

3. Alan Donovan, Adam Kieżun, Matthew S. Tschantz, Michael D. Ernst. Converting
Java Programs to Use Generic Libraries. ACM SIGPLAN Notices, Proceedings of
the 19th annual ACM SIGPLAN Conference on Object-oriented programming,
systems, languages, and applications, Vol. 39, Issue 10, 2004.

4. Dominic Duggan. Modular Type-Based Reverse Engineering of Parameterized
Types in Java Code. ACM SIGPLAN Notices, Proceedings of the 14th ACM SIG-
PLAN conference on Object-oriented programming, systems, languages, and ap-
plications, Vol. 34, Issue 10, 1999.

5. Java language specification, 3rd edition. Available at
http://java.sun.com/docs/books/jls/download/langspec-3.0.pdf

6. Kresten Krab Thorup. Genericity in Java with virtual types. European Conference
on Object-Oriented Programming. LNCS 1241, Springer-Verlag,1997.

7. Martin Odersky, Philip Wadler. Pizza into Java: translating theory into practice.
Symposium on Principles of Programming Languages. ACM, 1997.

4 http://www.antlr.org
5 http://htmlparser.sourceforge.net
6 http://www.cs.princeton.edu/ãppel/modern/java/CUP
7 http://www.cs.princeton.edu/ãppel/modern/java/JLex
8 http://www.junit.org
9 http://telnetd.sourceforge.net

10 http://www.hibernate.org

8. Frank Tip, Robert Fuhrer, Julian Dolby, Adam Kieżun. Refactoring Techniques for
Migrating Applications to Generic Java Container Classes. IBM Research Report
RC 23238, (Yorktown Heights, NY, USA). June 2, 2004.

9. Eclipse project. http://www.eclipse.org
10. Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, F. Kenneth

Zadeck. Efficiently computing static single assignment form and the control de-
pendence graph. ACM Transactions on Programming Languages and Systems
(TOPLAS), Vol. 13 Issue 4, October 1991.

