Hardware Description Language
Based on Message Passing and Implicit Pipelining

Dmitri Boulytchev

St. Petersburg State University
db@tepkom.ru

Abstract

We present a hardware description language (currently
called “HaSCoL” ) which is based on both reliable and
unreliable message passing and implicit pipelining of
message handlers. The language consists of a small core
and a number of extensions, which cover many features
of high level software languages as well as high level
hardware description languages (HDLs). These exten-
sions have simple projections into the core language and
allow compact and concise description of complex al-
gorithms. The core language in turn can be converted
into efficient VHDL. We discuss place-and-route results
for some benchmarks implemented both in HaSCoL and
VHDL and suggest an optimization which should im-
prove the results significantly and make them close to
those for hand-coded VHDL.

1. Introduction

The advances in hardware development technologies
made the process of hardware design and implemen-
tation more “software-like”. For example many algo-
rithms can now be accelerated in orders of magnitude
by partial mapping to FPGA (e.g. molecular dynamics
simulation [6] or XML filtering [7]). These algorithms
can be of various domains and therefore might be tough
to implement using conventional hardware development
techniques which were historically ad-hoc crafted to uti-
lize rather low-level tools for rather narrow set of prob-
lems. In particular, two general problems in the domain
of hardware-software codesign — Design Space Explo-
ration (DSE) and hardware-software decomposition —
can hardly be solved using conventional hardware de-
scription language (such as VHDL or Verilog) as the
language of primary representation.

The main problem with those languages (let alone
their low level) is that they can hardly be operated in
a formal, unmanned way. For example, hardware de-
velopment using VHDL involves a lot of pragmatics,
is directed by a number of programming patterns and

Oleg Medvedev

St. Petersburg State University
dours@mail.ru, dours@tepkom.ru

depends on secret knowledge of implementation details
and subtle host platform properties. In the same time the
assistance of development tools for exploring the design
space by source code transformations with predictable
results is extremely desirable.

Another inconvenience originates from the fact that
hardware and software are traditionally expressed us-
ing different languages. Thus the problem of interfacing
software and hardware components arises. At present
time no drastic solution for this problem is suggested.

We argue that these problems can be solved by de-
scribing both hardware and software using the same
general-purpose programming language (with hard-
ware description as its proper sublanguage). We call
this language “HaSCoL” (Hardware-Software Codesign
Language). This paper presents our current state of the
art: a pure hardware description language.

2. HaSCoL in a nutshell

This section informally describes the language by exam-
ples.

2.1 Core features

Any specification in HaSCol describes synchronous de-
sign. Unlike VHDL or Verilog clock and reset (and some
auxiliary) signals are not presented explicitly but ex-
press themselves by mean of relevant constructs seman-
tics.

The example below demonstrates some features of
the language using inline comments (which start with
two dashes):

— A 19—bit unsigned integer global variable with asynchronous
— read and synchronous write access; initial value 5
— is assigned on each reset.
data count : uint(19) = 5;
— A handler which starts on each cycle when messages arrive
— simultaneously from the channels “chanl” and “chan2”.
in chanl(a : Typel), in chan2(b : Type2) {
— In the first cycle of handler body we put the result of



— some computation (”a+b”) into intermediate register “c” and
— increment the global counter in parallel.
c=a+b | count := count + I;
— In the second cycle we evaluate a condition ("¢ > 07)
— and perform the first cycle of the “else”—branch or
— "then”™—branch respectively.
if ¢ > 0 then
— We send the value of register “c” through the channel
— 7chan3”. If no handler is ready to consume the value
— the computation is suspended for one cycle.
send chan3(c)
else
— We asynchronously compute expression ”not c¢” and store
— the result in register ”d”. In parallel we send a message

— to the "notify” channel in an unreliable manner (i.e.

— the computation continues regardless successful delivery).

d = not ¢ | inform notify();
— We reliably send ”d” to the “chan3” on the next cycle.
send chan3(d)

fi

The example above demonstrates the two main fea-
tures of HaSCoLL — stallable pipelining and reliable
message delivery. Pipelining means that a handler starts
to process a new incoming set of messages on each cy-
cle unless its first cycle is stalled. That is, if it takes more
than one cycle to process a set of messages then many
sets of messages can potentially be processed simulta-
neously in a pipelined manner.

Reliable message delivery means that each “send”
operator may stall a handler if no handler is ready to
accept the message being sent. The stall is propagated
in opposite to the message flow direction so that no
message is ever lost. This reliability mechanism may
completely block a handler. Since reliable delivery is
not always desirable the language also has “inform”
construct, which never stalls but may loose messages.

The language provides many high-level constructs by
mean of syntax extensions (see section 3). Below we
demonstrate the most hardware specific one — proces-
sor instruction description:

— The statement expresses a register—to—register assignment.
— It matches an instruction code in “cmd” with a binary pattern
— of the instruction and performs assignment.
match cmd with
— The instruction has two parameters —— numbers of general
— purpose registers of the processor.
insn (src, dst : uint(3))
— Instruction semantics.
does { regs[dst] := regs[src] }
— Binary pattern: specified bit strings and binary
— representation of the parameters have to be
— concatenated to produce a binary representation of
— the instruction (e.g. 0x6F000000).
coded {0bO1 src dst 0x000000 }

— Assembler syntax pattern: specified strings and
— string representation of the parameters have to be
— concatenated to produce assembler text for the

— instruction (e.g. "r5 := 177).

looks {"r” dst ”:=" "r” src}

end

2.2 Structural design and communication

A typical design in HaSCoL consists of a hierarchy of
blocks. Blocks are interconnected by channels, which
are used to transmit messages between handlers.

A single HaSCoL block is a set of handlers. Each
handler receives messages from some channels, pro-
cesses received data and sends messages in a reliable
or non-reliable manner through other channels.

Some of blocks may be written directly in VHDL
if one needs to instantiate some technology-specific
VHDL components (e.g. a dual-port on-chip RAM).

A situation when two different messages are sent
through the same channel in the same cycle is rather
common for complex designs. HaSCoL provides a con-
venient way to resolve such a conflicts by introducing
the notion of ports, which can be specified for a chan-
nel (in fact, if no ports are explicitly specified then one
default port is assumed; strictly speaking a message can
only be sent through some port of channel, not a chan-
nel itself). All ports of the same channel have different
priorities assigned. Sending different values through the
same port of the same channel at the same cycle results
in unpredictable clash of data, while sending through
different ports does not.

There are two priority assignment disciplines —
static and fair. Static priorities are assigned once and
for all; fair priorities are reassigned in a circular manner
each time a message is consumed from the channel.

3. Language extension hierarchy

An important HaSCoL feature, which facilitates various
analyses and transformation into VHDL, is that HaS-
CoL is not a single language but a hierarchy of lan-
guages. Each hierarchy level is a syntax extension of the
previous one. The base level is easily convertible into ef-
ficient VHDL. The hierarchy is shown on Fig. 1.

The core language level consists of constructs to ex-
press only structural design, message delivery, straight-
line multi-cycle code and one-cycle conditionals (no
other control flow, no global variables etc.) This level
can be directly converted into synthesizable VHDL.

The next level extends core language with global
variables. It is converted to the core language by rep-
resenting each global variable as a handler which holds
assigned value by permanently resending it to itself in



\ Processor instruction set description /

Coarse grain synchronization
(monitors)

Control flow statements
(conditional, loop,
pattern matching etc.)

Global variables

Core
language

Figure 1. Language extension hierarchy

Table 1. Evaluation results

FFT polynomial
VHDL HaSCoL | VHDL HaSCoL
Lines of code 531 290" 95 18
4-input LUTs 566 2320 129 162
RAMBI6s 40 40 0 0
DSP48s 16 16 18 18
Clock, MHz 147 150 120 122

*

The FFT benchmark is written in HaSCoL except for the
FPGA-specific block RAM instantiation code, which is in VHDL.
The HaSCoL part is 138 lines, the VHDL part is 152 lines

each cycle. Read and write operations are expressed by
sending and receiving dedicated messages.

The control flow level adds all conventional struc-
tural control flow primitives (including pattern match-
ing) to the previous one. It is translated back to the pre-
vious level by emulating control flow with data flow.

Synchronization level enriches the language with the
notion of monitors which can be used to prevent con-
flicting handlers from simultaneous execution. Again,
each monitor is expressed in the previous language us-
ing similar properties of reliable message delivery.

Finally, instruction set level introduces instruction
description construct which we already observed in the
Section 2.1. Conversion into the previous level replaces
instruction description with regular pattern matching.

A fact that the language is separated into several
levels demonstrates that most language constructs are
orthogonal to each other and to the basic primitives. We
believe that this is good by itself.

This fact also allows to implement HaSCoL to
VHDL translation as a set of separate passes. This sim-
plifies design and testing of the translator.

4. Evaluation

Currently HaSCoL is supported by the following tools:
parser and type checker; VHDL generator which gen-

erates synthesizable VHDL; assembler generator which
generates a binutils-compatible' assembler from a pro-
cessor instruction set description. In this section we
present evaluation of these tools on some benchmarks.

First, we implemented a pipelined cubic polynomial
evaluator and a Fast Fourier Transform with a pipelined
butterfly. Table 1 shows results of synthesis and place-
and-route for a Virtex-4 xc4vlx15-12sf363 device. Im-
plementations written in HaSCoL and in pure VHDL
are compared for each benchmark.

For a case of the polynomial the difference in perfor-
mance is rather minor.

Analysis of mapping results for the FFT explains
the major difference in LUT numbers. The reason is
an incompleteness of the VHDL generator. It generates
a huge amount of logic to support reliable message
passing even for the case, where only unreliable one
is used (like in FFT). This defect can be fixed with an
appropriate code analysis and we will do this soon.

Note that the difference in description simplicity is
major for both cases. The FFT is written almost di-
rectly like in a general purpose software programming
language, using “if” and “while” constructs. An abil-
ity to integrate VHDL code as “external” processes is
used to interface with the Virtex on-chip RAM to store
coefficients and data arrays.

Second, we implemented a “real-world-size” design
only in HaSCoL. It is a 32-bit general purpose processor.
It is integrated into GRLIB? environment as an AMBA
bus master and is developed to run an embedded Linux
distribution. We implemented it using automatical as-
sembler generation, which significantly speeded up the
development. The processor occupies 700 lines of code,
which include a register file, an ALU, an AHB bus mas-
ter interface, interrupts and exceptions support, an in-
struction queue, and a memory management unit. A de-
bug support unit occupies another 155 lines.

The processor has a non-trivial architecture with out-
of-order execution. Currently it runs on 70MHz in a
GRLIB environment with a DDR2 memory controller
on a xc5vIx50t-2ff1136 device. The processor with a
debug support unit occupies about 4000 LUTs, 2000
flip-flops, and 4 DSP48 blocks.

5. Related work

Many efforts have been applied to develop a language
for high-level algorithm description which could also
allow efficient hardware synthesis.

In ROCCC 2.0 [8] project a C-like language is used
for algorithm description which allows parallelization

Uhttp://www.gnu.org/software/binutils/
2 http://www.gaisler.com



of loop nests for a higher performance. The parallel
versions of loops are then mapped to an FPGA. This
project is aimed at high-performance computing, not
general hardware development. For example, the lan-
guage doesn’t have a notion of a cycle, so one just can-
not express arbitrary hardware with this language.

Our approach is rather different: we want to have
a true high-level hardware description language, which
could be used as a target for a compiler from an abstract
algorithm description language. This would seriously
simplify such a compiler.

SpecC [5] 3 is an extension of C programming lan-
guage for hardware development. Communication be-
tween concurrent entities is based on events. The time
interval semantics of the event delivery resembles that
of VHDL. Statements with arbitrary control flow and
explicit parallel and pipeline blocks are allowed.

On the contrary the semantics of our language di-
vides time into cycles. This allows to express reliable
message delivery as well as static and fair priorities for
a channel trough which several messages may be sent
simultaneously (i.e. in the same cycle).

Handel-C [2] (which is based on Occam [9] which is
in turn based on CSP [3]) is another extension of C. It
is aimed mainly at producing synchronous designs and
its semantics of channels and reliable message passing
resembles ours.

Nevertheless our language have then following dif-
ferences:

1. A message can be received and re-sent to another
channel within the same cycle. This is really desir-
able sometimes — for example, when we want to
write an asynchronous stub between two predefined
components.

2. Many handlers may try to read from the same chan-
nel in the same cycle.

3. A handler may refuse to consume a message.

A structural decomposition support in Handel-C also
seems not to be as convenient as in HaSCoL or VHDL.

Bluespec [4; 1] allows a system to be described as
a set of modules communicating by sending commands
to one another and by accessing read-only ports of each
other. An internal description of a module is based on a
concept of guarded atomic actions. These actions oper-
ate on the module’s local data. Each action has a predi-
cate that says whether it can be fired on this cycle. A pro-
grammer may assume that actions are executed atomi-
cally and sequentially. In order to execute some ations in
parallel to improve efficiency while preserving seman-
tics a special dynamic scheduler of them is generated.

3 http://www.cecs.uci.edu/“specc/

Our language doesn’t hide that much from a designer
and allows one to make cycle-accurate descriptions.

SystemC [10] allows hardware to be described at var-
ious levels of abstraction. It is intended mostly for sys-
tem level simulation, though there is a possibility to de-
scribe hardware at the RTL level. SystemC is not a lan-
guage but rather a set of idioms for the C++ program-
ming language. We believe that this “programming in
terms of idioms” approach makes introduction of some
desirable language extensions (e.g. control flow) almost
impossible.

An important feature of HaSCoL that lacks in all
the above-mentioned languages is a convenient pipeline
description with automatic creation of intermediate
buffers.

6. Future Work

The main direction for a future work is to improve
VHDL generator and make it use advanced analysis and
optimization techniques to provide more efficient hard-
ware implementations. This would allow us to generate
competitive designs.

Another direction is to develop a number of refac-
toring and transformation tools to provide a way for
human-driven automated hardware optimization.

References

[1] Arvind, R. S. Nikhil, D. Rosenband, and N. Dave. High-
Level Synthesis: An Essential Ingredient for Designing
Complex ASICs. In Proceedings of ICCAD, 2004.

[2] Celoxica. Handel-C Language Reference Manual. 2005.

[3] C. A. R. Hoare. Communicating Sequential Processes.
Prentice-Hall International, 1985.

[4] J. Hoe. Operation-Centric Hardware Description and
Synthesis. PhD thesis, Dept. of EE&CS, MIT, 2000.

[5] R. D. Jianwen Zhu and D. D. Gajski. Syntax and Se-
mantics of the SpecC Language. In Proceedings of the
Synthesis and System Integration of Mixed Technologies
1997, 1997.

[6] Y. G. Martin. High Performance Molecular Dynamics
Simulations with FPGA Coprocessors. RSSI, 2009.

[7] A. Mitra, M. R. Vieira, P. Bakalov, V. J. Tsotras, and
W. A. Najjar. Boosting XML filtering through a scalable
FPGA-based architecture. In CIDR. www.crdrdb.org,
2009.

[8] W. Najjar and J. Villareal. Reconfigurable Computing in
the New Age of Parallelism. SAMOS Workshop, 2009.

[9] I. Page and W. Luk. Compiling Occam into FPGAs. “FP-
GAs”, Abingdon EE&CS books, pages 271-283, 1991.

[10] G. M. Thorsten Grotker, Stan Liao and S. Swan. System
Design with SystemC. Kluwer Academic Publishers,
2002.



