
Precise Garbage Collection for C++
with a Non-Cooperative Compiler

Daniil Berezun
JetBrains

St. Petersburg, Russia
Daniil.Berezun@jetbrains.com

Dmitri Boulytchev
St. Petersburg State University

St. Petersburg, Russia
dboulytchev@math.spbu.ru

ABSTRACT
We describe a garbage collector for C++ implemented as a
user-level library, which does not require a cooperative com-
piler but makes use of a custom garbage-collection-friendly
heap implementation. We claim our garbage collector to be
precise, i.e. capable to precisely identify all pointers to all
managed objects, tolerant to the conventional C++ manual
memory management, and safe in the sense that it does not
affect the semantics of the program as long as a simple con-
ventions, encouraged by library interface, are followed. We
also discuss a performance penalties imposed by the usage
of our library on an end-user program.

Categories and Subject Descriptors
D.3 [Programming Languages]: Processors; D.3.4
[Memory management (garbage collection)]: [C++,
library, non-conservative]

1. INTRODUCTION
Garbage collection for C++ is a matter of a long-term dis-
cussion. Indeed, being positioned as a system-level language
C++ provides features and constructs for a fine-tuning of
various program traits and properties among which memory
management often is of primary importance. So the ability
to control memory management discipline is a vital property
for C++ which virtually no one is dare to sacrifice. Many
additional features of C++ aimed at providing better user-
level control on a data representation and implementation
of data transformations such as liberal type casts, pointers
and pointer arithmetics etc. also make implementation of
conventional garbage collection hard, if not impossible.

On the other hand garbage collection is often desirable for a
components which are not performance-critical or hard and
error-prone to implement using manual memory manage-
ment. In addition some of the approaches used in garbage
collection can be used for verification or debugging purposes
as well.

We present a library which implements a precise garbage col-
lection for C++. The library does not require any coopera-
tion from the compiler and so potentially can be used with
any compiler complying C++—11 Standard [16]. Our li-
brary provides minimalistic and easy-to-use interface, which
makes it possible to organize garbage collection for man-
aged objects which were created and operated with respect
to that interface. The interface in question does not im-
pose any artificial limitations on C++ constructs or the way
they can be utilized. Our approach is safe in the sense that
nothing can “go wrong” because of the garbage collection
as long as no malicious or accidental intrusion into garbage
collector’s internal data structures is performed and a sim-
ple conventions are respected. Managed objects can coexist
with unmanaged and can reference them with no additional
cost or limitations; the referencing of managed objects from
a non-managed is also possible but requires some user as-
sistance to work. The presence of unmanaged objects and
references, however, violates safety conventions which can
make the reasonings about safety harder.

Our current implementation works on 64-bit Linux for
single-threaded applications, but can be ported to other
platforms and made thread-safe with relatively small efforts.
We admit a performance issue with our implementation;
nevertheless to our knowledge this is the first library-based
garbage collector for C++ in its full bloom so we think the
analysis of its properties can be beneficial even if it cannot
be used yet in a real-world industrial projects.

We also express our gratitude to Maria Kren, Alexander
Granovski and Mikhail Aristarkhov for their contribution on
the earlier stages of this work, and to Oleg Pliss and anony-
mous reviewers who provided a precious feedback which
helped us to improve the paper.

2. RELATED WORKS
Garbage collection [2,3] is comprised of a number of princi-
ples, approaches and algorithms for automatic memory man-
agement.

One class of techniques is based on the idea of reference
counting. In short, with reference counting every object
is equipped with an integer value — reference counter —
containing the number of existing references to this object.
Pointer assignment operations are tracked in order to main-
tain the correct values for reference counters. An object
is categorized as a garbage when its reference counter hits

zero. Reference counting in its original formulation is rather
easy to implement; it can be used in various frameworks for
different languages. There are, however, some well-known
drawbacks:

• maintaining reference counters impose constant per-
formance overhead on pointer operations;

• reference counting in its original form can not handle
circular references: a set of mutually-referenced ob-
jects will never be categorized as a garbage;

• reference counting can potentially cause unpredictable
pauses due to a massive deallocation of objects in a
hierarchical data structures.

All these drawbacks were later addressed; however the im-
proved versions of reference counting are not as simple and
universally applicable as the original one.

Tracing garbage collection forms another category of ap-
proaches. The key observation for tracing garbage collec-
tion is that an object (block of memory) which can not be
reached from other “useful” objects via references can not
be used by a program. As this observation is apparently
reflexive some axiomatic predefined root set of “useful” ob-
jects has to be defined. The exact definition of a root set
depends on the architecture and runtime organization. In
a typical case the root set consists of objects immediately
referenced from the stack and static memory. Note that the
“reachability” property conservatively approximates “useful-
ness” which is undecidable to determine in the majority of
interesting cases.

Next, to make tracing garbage collection precise there has
to be some way to identify references to other objects within
given object’s data. As a rule some meta-information has
to be attached to all objects for this purpose. Precise
garbage collector can safely distinguish references from non-
references which guarantees that it can (in principle) reclaim
all unreachable memory. In contrast, conservative garbage
collector can only determine potential references using some
heuristic conservative tests which makes it possible to over-
look garbage.

Finally, garbage collection restricts the set of operations on
pointers which are considered legitimate. In the simplest
case only assignment and dereferencing are allowed; some
approaches make it possible to support address arithmetic
at the cost of performance penalty. With these requirements
violated the garbage collection becomes unsafe, i.e. capable
to reclaim utilized memory blocks.

The simplest algorithm for a tracing garbage collection is
mark-and-sweep. Starting from the root set, all reachable
objects are traversed and marked (“mark phase”). Then,
during “sweep phase”, a memory, occupied by all non-
marked objects, is reclaimed. Another basic algorithm is
copying garbage collection, in which all reachable objects
are copied one by one into an area in the heap which was
in advance deliberately left free; so after the collection the
heap is compactified. More sophisticated approaches include

“mark-and-compact”, generational garbage collection as well
as concurrent and parallel versions and mixtures of those.

An ability of a garbage collector to compactify heap is an im-
portant and often desirable property since it allows reducing
heap fragmentation, simplifying heap implementation and
speeding up memory allocation. However, compactification
is possible only in precise garbage collectors since they have
to update all relevant references to an object as it moves.

As we can see, in C++ virtually every requirement for a
safe and precise garbage collection is violated. Thus, imple-
menting garbage collection for C++ inevitably results in im-
posing some limitations on the programs of interest. There
are three mainstream approaches to garbage collection for
C++ [10], which we consider here.

The first approach is to utilize conservative garbage collec-
tion. Hans Boehm’s garbage collector1 is a renowned exam-
ple for C/C++ and virtually the only one which is ready
to use with real-world applications. It does not impose es-
sential performance penalties during memory allocation and
does not require source code modification to utilize. It is
claimed that its performance is usually on a par with con-
ventional garbage collectors. However, some drawbacks have
to be mentioned:

• as it does not contain any user-level interface to
garbage collection it is hard to justify its safety for
a concrete program; the conventions for the safety of
garbage collection are purely semantic and can easily
be violated accidently;

• a special attention has to be payed to objects’ destruc-
tors — they are not called by default when correspond-
ing object is collected;

• with this framework all objects become managed —
there in no way to create unmanaged objects at all,
which in some cases can be undesirable.

Another interesting example is Bartlett’s mostly copying
garbage collector [7]. Like in the previous case, the root set
here is identified conservatively, but an end-user program
has to be annotated with certain primitives to help garbage
collector identify intra-object pointers, which makes it pos-
sible to move objects and compactify the heap. As we can
see, this approach requires “cooperative user” to work.

The second class of approaches utilizes the notion of smart
pointer. Smart pointer [9] is a class which implements
conventional pointer interface while performing some ac-
tions behind the scene. For example, a reference counting
garbage collection can be implemented using smart point-
ers. Smart pointers are fairly widespread in C++ and are
used in a number of frameworks. We can mention [14],
where mark-and-sweep garbage collection is organized us-
ing smart pointer interface. However, unlike our library,
reported garbage collector is not precise and does not sup-
port multiple inheritance. As a rule, smart pointers add an

1http://www.hboehm.info/gc

essential overhead to all pointer operations which can slow
down the program in several times.

Finally, the third approach to a garbage collection for C++
deals with language extension. Strictly speaking, language
extension is inevitable for precise and safe garbage collec-
tion to be possible [13]. The necessity for language exten-
sion can also arise in the context of C++ implementation for
platforms which require garbage collection support or make
this support beneficial [15]. However, as changing the sub-
strate language, these approaches can not be categorized as
garbage collection for C++ per ce; in addition all of them
require cooperative compiler.

3. GARBAGE COLLECTION
LIBRARY INTERFACE

Our garbage collector is implemented as a user-level library,
which can be utilized both shared or statically-linked.

Two key entities of the library interface are smart pointer
class gc_ptr:

template <class T> class gc_ptr

and memory allocation template function gc_new:

template <class T , typename . . . Types>
gc_ptr<T> gc_new (Types . . . types , size_t count = 1)

We claim that our garbage collector will correctly manage
any program which uses gc_ptr instead of regular pointers
and gc_new instead of regular operator new. Conventional
operator delete can still be used; however, it will not re-
claim memory occupied by managed objects. Moreover, we
deliberately do not provide any way to make destructors of
reclaimed objects be called during garbage collection phase
since it would result in semantic flaws similar to those for
Java finalizers2. With our approach destructors can still
be used as conventional dispose primitives with explicitly
specified behaviour for all versions of objects’ allocation;
the only difference between managed and non-managed ob-
jects is that for non-managed memory reclamation follows
destructor invocation immediately while for managed it is
postponed until garbage collection.

Class gc_ptr represents a garbage-collection-safe pointer in-
terface:

1. gc_ptr () — default constructor;

2. gc_ptr (const gc_ptr<T> &p) — copy constructor;

3. gc_ptr (const gc_ptr<T> &&p) — move construc-
tor;

4. T& operator∗() const — dereference;

5. T∗ operator→() const, operator T∗ () const —
access to a pointer;

2https://www.securecoding.cert.org/confluence/display/java/
MET12-J.+Do+not+use+finalizers

6. T& operator [](size_t index) — array element ac-
cess;

7. bool operator== (const gc_ptr<T> &a),
bool operator== (const T∗ a) — equality checks;

8. bool operator!= (const gc_ptr<T> &a),
bool operator!= (const T∗ a) — inequality checks;

9. gc_ptr& operator = (const gc_ptr<T> &a) — as-
signment;

10. gc_ptr& operator = (const gc_ptr<T> &&a) —
move assignment;

11. operator bool () const — NULL check;

12. void nullify () — NULL assignment.

Function gc_new allows us to express all use cases for mem-
ory allocation:

1. gc_new<type> () — allocation for atomic types (int,
float etc.);

2. gc_new<C> () — allocation for a single instance of
class C with default constructor invocation;

3. gc_new <type> (len) — allocation for an array of
length len with elements of atomic type type;

4. gc_new <C> (len) — allocation for an array of length
len with instances of class C with default constructors
invocation for its elements;

5. gc_new <C, T1, T2, ..> (a1, a2, ..) — allocation for a
single instance of class C with non-default construc-
tor invocation with parameters a1, a2, . . . of types
T1, T2, . . . respectively.

To make this possible we utilize ellipses and variadic tem-
plates — distinctive new feature of C++—11.

As we can see, the only legitimate ways to construct in-
stances of gc_ptr are either using copy constructor or
gc_new. Regular pointers can be exported from gc_ptr,
but can not be imported into. As an example of this in-
terface utilization we present an implementation of garbage-
collected strings (see Fig. 1).

A careful reader may notice that we left overboard one im-
portant feature of C++ — it is impossible to acquire a
gc_ptr, which points into the middle of some object, with
presented interface. For example, it is impossible to take an
address (in the form of gc_ptr) of a structure field or ar-
ray element. To cope with this deficiency we introduce the
following additional function:

template <typename F , typename B>
gc_ptr<F> derive (const gc_ptr base ,

const F∗ field)

class GCString {
private :

gc_ptr<char> pData ;
int length ;
GCString (gc_ptr<char> p , int l) :

pData (p) , length (l) {};
public :

GCString () : length (0) , pData () {};
GCString (const char ∗cString) ;
virtual ˜GCString () {};
GCString (const GCString &s) ;
GCString operator= (const GCString &s) ;
GCString operator= (const char ∗cString) ;
char operator [] (int i) {return pData [i] ;} ;
GCString operator+ (const GCString &s) ;
GCString operator+ (const char ∗cString) ;
GCString operator+= (GCString& s) ;

};

GCString : :GCString (const char ∗cString) {
length = strlen (cString) ;
pData = gc_new<char> (length+1);
strcpy ((char ∗) pData , cString) ;
}

GCString : :GCString (const GCString &s) :
length (s .length) , pData (s .pData) {}

GCString GCString : :operator= (const GCString &s) {
length = s .length ;
pData = s .pData ;
return ∗this ;
}

GCString GCString : :operator= (const char ∗cString) {
return ∗this = GCString (cString) ;
}

GCString GCString : :operator+ (const GCString &s) {
gc_ptr<char> p = gc_new<char> (length + s .length + 1);
strcpy (p , (char∗) this→pData) ;
strcat (p , (char∗) s .pData) ;
return GCString (p , length + s .length) ;
}

GCString GCString : :operator+ (const char ∗cString) {
return ∗this + GCString (cString) ;
}

GCString GCString : :operator+= (const GCString &s) {
return ∗this = ∗this + s ;
}

Figure 1: Example: garbage-collected strings

This function allows us to acquire a derived gc_ptr; here
base must point to the beginning of the object, field —
to a some position “inside” base. To ensure safety, derive
performs a runtime check of aforementioned contract.

Managed by our library objects can coexist with regular
unmanaged objects which can be allocated by new and freed
by delete constructs. It is legitimate to keep pointers from
managed objects to a non-managed; non-managed objects
are completely invisible for the garbage collector. Moreover,
it is possible to store a pointers to managed objects inside
non-managed. However such pointers have to be manually
registered/deregistered using functions

void register_object (void ∗);
void unregister_object (void ∗);

Registering an object immediately makes it an extra root;
unregistering immediately removes it from the extra root
collection.

Preciseness and safety are two important properties for a
garbage collector which should be directly addressed. We
postpone, however, the discussion of these properties and
first provide an overview of the implementation.

4. IMPLEMENTATION
Our library implements one of the simplest kinds of tracing
garbage collection: stop-the-world mark-and-sweep. How-
ever even for this case we had to solve the following prob-
lems:

• identify root set;

• construct and maintain meta-information;

• implement garbage collection invocation discipline.

An important component of our implementation is coop-
erative heap. Additionally we maintain a few separate
pools. These pools are managed using Linux-specific func-
tions mmap/munmap3 which strictly speaking makes our li-
brary non-portable. We consider this non-portability as a
minor drawback since a similar set of memory-management
primitives is available in any general-purpose system.

In the following subsections we describe our implementation
in details.

4.1 Cooperative Heap
Cooperative heap is an essential component of our solution.
With cooperative heap we could easily implement the fol-
lowing important features:

• distinguish heap pointers from a non-heap;

• implement efficient sweep phase;

• store some garbage-collection-critical information for
allocated blocks.

For a base heap implementation we took existing garbage-
collection-cooperative heap [4] which in turn was derived
from the well-known Doug Lea’s malloc4. Our modifications

3http://man7.org/linux/man-pages/man2/mmap.2.html
4http://gee.cs.oswego.edu/dl/html/malloc.html

do not compromise the advantages of the original implemen-
tation.

Our heap maintains two bits in the header of each allocated
block: managed bit and mark bit. Managed bit reflects
the property of the block to be allocated for a managed
object. This bit is set within gc_new function and cleared
within regular new and malloc which are redefined in our
library. Mark bit is unused for a non-managed blocks; for
managed it represents conventional mark-and-sweep’s mark
bit. Two bits are available for free in the implementation
of our heap for 64-bit platforms; we presume it is possible
to tune it up for 32-bit version as well; however our current
implementation is restricted to 64-bits so far.

Managed bit allows us to provide coexistence of managed
and non-managed objects; in particular, garbage collector
never reclaims memory occupied by non-managed objects;
delete or free never reclaim managed memory.

4.2 Implementation of gc_ptr
Implementation of smart pointer class gc_ptr plays a crucial
role in our library. In this section we consider only gc_ptr’s
data representation; besides that an important subject is a
semantics of its constructors and destructor; we, however,
describe them in other sections.

Instances of gc_ptr come in two flavors: simple and compos-
ite. Composite instances can only be constructed via derive

function, while simple — only by gc_new.

In either way an instance of gc_ptr occupies one machine
word and contains an augmented pointer. We make use of
two least significant bits (which are always available for free
in both 32- and 64-bit models) to distinguish, first, root
pointers from a non-root and, second, simple pointers from
composite. These bits are masked out as pointer value is
exported.

Simple pointers, besides two augmenting bits, hold a regular
address. Composite pointers, however, point to an auxiliary
two-word data structure — trampoline — which is stored
in the heap. Two words of a trampoline hold, respectively,
the starting address of the allocated object and the derived
address within that object. This organization allows us to
deal with derived pointers while preserving an ability to find
the starting address of an allocated object easily. As tram-
polines reside in the regular heap, they are managed by the
very same garbage collector: indeed, as it is capable to iden-
tify all live gc_ptr’s, it is equally can identify all live tram-
polines.

4.3 Constructing and Maintaining
Root Sets

Conventional garbage collectors can safely identify root
pointers among all other available data values; this iden-
tification is performed inside garbage collector and utilizes
a certain contract which is respected by a compiler. How-
ever, as we do not claim a compiler to be cooperative, we
generally can not rely on any assumptions of data layout it
provides; moreover, our experience [1] shows that in case of
optimizing compiler no safe assumptions can be made at all.

Instead, we entrust a managed program with the burden to
construct and maintain a root set for us. We do it using
constructors and destructors of gc_ptr.

We maintain two root sets which reside outside managed
heap in a separate pools.

The first is organized as a regular balanced tree with insert-
search-delete operations. This tree maintains a collection of
external roots — those pointers which were explicitly reg-
istered using register_object primitive (see Section 3).
When a non-managed object stores a reference to a man-
aged, the referenced object becomes an external root and
has to be explicitly registered. During the mark stage ex-
ternal roots are taken into account like the regular ones. It
is left to a user completely to register external roots and
unregister them when they are not needed anymore.

The second set of roots is implemented as a stack which
holds a regular stack/static roots. Each instance of gc_ptr
can categorize itself as a root or a non-root by analyzing its
own this. Since no root can reside in a heap, an instance of
gc_ptr categorizes itself as a root if it’s this does not point
into the heap (a cooperative heap interface is used for this
purpose). The result of categorization is stored into the ded-
icated bit of gc_ptr thus making every instance of gc_ptr
to remember it. If gc_ptr was categorized as a root then
it’s this is pushed onto the root stack. All this work is per-
formed in gc_ptr’s constructors. In gc_ptr’s destructor root
bit is inspected; if it is set then this root has to be removed
from the stack. In short, every instance of gc_ptr, which
categorizes itself as a root, self-registers in it’s constructor
and self-unregisters in it’s destructor.

4.4 Constructing and Maintaining
Meta-information

Meta-information in our framework is constructed and main-
tained in a tight cooperation between gc_ptr constructors
and function gc_new. In addition we utilize Runtime Type
Identification (RTTI) to establish a mapping between meta-
information for a class and instances of that class.

Meta-information for a class is organized as an array of
words of fixed (but specific for a given class) length. Each
word of the array corresponds to a single field of type gc_ptr
and contains an unsigned offset of that field in class’ data.
Our library maintains a collection of meta-data for each class
indexed by its name, acquired via RTTI. This collection re-
sides in a separate pool outside the heap.

Meta-data for a class is constructed when its first instance
is created in the heap. The only conventional way to do
it in our library is by using function gc_new. Moreover,
each gc_ptr within class in question will eventually has its
constructor called. These considerations can be reified into
the following protocol:

• gc_new initializes some global data structure, allocates
a necessary amount of memory in the heap and creates
an instance of class of interest using placement new
construct;

• a constructor of gc_ptr inspects that global data struc-
ture to decide if it was called in the context of gc_new;
if so then it registers its own this in that data struc-
ture;

• after the execution of placement new operator is com-
pleted gc_new inspects that global data structure and
retrieves a list of all this’ for all gc_ptrs resided within
just initialized class instance;

• gc_new calculates the offsets for all elements of re-
trieved list, constructs meta-information data struc-
ture and appends it into meta-data collection.

Several refinements and optimizations have to be performed
to make this protocol work.

First, there is no need to construct meta-data for classes
more then once.

Then, we have to take care of nested calls to gc_new which
can occur, for example, when an instance of some class is
constructed by a constructor of another class. To handle this
case we make gc_new to save current content of the global
data structure into stack in the beginning and to restore it
before exiting.

Next, strictly speaking during the construction of a class not
only those constructors of gc_ptr, which correspond to its
fields, can be called. Any constructor may have instances of
gc_ptr as its local variables or call functions which have lo-
cal variables of type gc_ptr. These instances of gc_ptr must
not register themselves into the global data structure. For-
tunately, all these instances reside on a stack which allows
us to filter them out easily.

Finally, an instance of a class can enclose instances of other
classes (for example, via inheritance or aggregation). We
have to make sure that this does not cause any problems
with our protocol. Indeed, as these instances never created
using gc_new, no problem arises.

As we pointed out earlier, no meta-information is created
when an instance of a class is constructed on the stack. How-
ever this does not cause any problems since all its gc_ptrs
resided on the stack as well and are categorized as roots.

On the final note, when an instance of a class or array is
constructed in the heap we precede its data with two words:
the first points to the meta-information for this class, the
second holds array’s length (1 for single class). Thus we
avoid the need to search for a meta-information.

During the mark phase of garbage collection we examine
each reachable gc_ptr in the following manner:

• if it is composite, we first retrieve the starting address
of the object; otherwise it is already a starting address;

• if starting address points to the heap then we know
both the number of elements to scan and the pointer
to the meta-information which is the same for each

element; we use this to retrieve all gc_ptrs for the
next iteration of marking;

• if starting address points outside the heap we do not
know anything else; however in this case all relevant
gc_ptrs were categorized as roots and were taken into
account in the very beginning of mark phase.

4.5 Garbage Collection Invocation Discipline
Another important property of garbage collector is the dis-
cipline of its invocation. We reused existing results [5] and
integrated them into our implementation.

In [5] four techniques were implemented to determine the
moments of garbage collection invocation; a number of en-
vironment variables can be utilized by an end user to select
certain technique and fine-tune its properties. To make a de-
cision several characteristics of both heap configuration and
memory allocation process are analyzed each time a mem-
ory management subsystem acquires a control. As original
implementation deals with Doug Lea’s heap its integration
into our library was trivial.

5. PRECISENESS AND SAFETY
Preciseness and safety are two important and desirable prop-
erties of garbage collection; when garbage collector is con-
sidered as a native and mandatory component of runtime
environment these properties are rather considered as re-
quirements. In our case, however, it is impossible to justify
neither of them unconditionally. However, as we implement
our garbage collector as a library with rather simple inter-
face, we can hope that necessary conditions can be formu-
lated in the form of coding conventions. In this section we
address such conventions.

We start from completely managed case — we assume that
every object in heap is managed. Clearly nothing wrong can
happen as long as we keep all pointers inside gc_ptrs. This
means that at least

• no object is constructed using operator new;

• no address is taken using operator “&”.

Both cases are justified by impossibility to turn pointer val-
ues into gc_ptrs. Unfortunately these two cases do not con-
stitute a sufficient condition. Indeed, even if we can not turn
pointers into gc_ptr we still can turn gc_ptrs into pointers.
Two examples illustrate the potential danger. The first is

class C {
X ∗ x = gc_new<X> () ;
};

Here we created a managed pointer with gc_new and imme-
diately store it as a non-managed which well definitely be
overlooked by the garbage collector since meta-information
for class C is empty.

The second example is

void f (C& c) { . . .}

f (∗gc_new<C> ()) ;

This time we converted gc_ptr into a reference; this refer-
ence will never be taken into account by the garbage collec-
tor.

To eliminate the first case we may introduce a rather natu-
ral requirement not to have any pointer declarations besides
gc_ptr at all. The second case is harder to handle; we can
either prohibit using references completely (which is a sim-
ple but restricting condition) or prohibit to initialize them
with dereferenced gc_ptrs (which is less restrictive but much
harder to follow).

The situation becomes even worse if we allow unmanaged
objects to exist. This time we can not prohibit neither op-
erators new and “&” nor pointer declarations to appear in
the program. We can only require not to convert managed
pointers into unmanaged and properly register/unregister
managed pointers stored into unmanaged objects.

6. PERFORMANCE
The performance of garbage collection is its vital charac-
teristic as it manages a critical and extensively utilized re-
source. However, it is unsurprisingly tough to measure a
performance impact imposed by a garbage collector to a
managed application. Indeed, as a rule garbage collection is
deeply integrated with a runtime environment, so it is gen-
erally not possible to get rid of its effects. Turning garbage
collection off in many cases results in a crush due to running
out of memory; increasing memory limits leads to extensive
swapping, which does not occur in managed case and com-
promises performance evaluation results. Modification of
a reference application to work without garbage collection
(even if possible) also makes evaluation results questionable
since strictly speaking the comparison is performed for a
different programs.

This section presents some considerations and performance
evaluation results for our library. We identify three cate-
gories of potential performance penalties:

1. an overhead imposed by smart pointer gc_ptr and root
set maintenance;

2. an overhead imposed by memory allocation function
gc_new and meta-information maintanance;

3. an overhead imposed by mark-and-sweep phase.

To evaluate the first category overhead we implemented two
versions of a reference application which constructs a sets of
binary trees in a bottom-up and top-down manner. The
first version was written in pure C++ while the second
utilized gc_ptr but did not use gc_new and, so, did not
trigger garbage collection. So, we could evaluate the per-
formance penalty imposed by smart pointers and root set
maintenance. The results of the evaluation are presented on
Fig. 2. As we can see, the first category of penalties results

in approximately two-times slowdown, which agrees with a
typical overhead for smart pointers.

Since it is impossible to evaluate the isolated overhead of
the second category we performed an evaluation of com-
mon library overhead: smart pointers, root sets and meta-
information construction and maintenance altogether, but
with no garbage collection initiated. For this purpose we
ran the same benchmarks, this time with gc_new as mem-
ory allocator and garbage collector switched off. The results
are presented on Fig. 3. As we can see, the overall slow-
down exceeds the order of magnitude. This evaluation gives
us a rather pessimistic worst case behaviour since no opera-
tions are performed apart from constructing objects (which
is costly with our approach).

We can note that the performance of managed implementa-
tion sometimes is better in a bottom-up case. This is due
to the fact that in our implementation top-down case re-
quires more pointer operations (first current node is build
with a default constructor and then pointers to its subtrees
are assigned).

We did not evaluate the performance with garbage collection
switched on since our primary interest was to evaluate the
overhead of a library-based approach.

7. CONCLUSIONS AND FUTURE WORK
We presented an implementation of garbage collector library
for C++. As this library does not require any assistance
from a compiler it can potentially be used with many stan-
dard compilers and utilized as a non-intrusive component
in many frameworks. Despite our current implementation
works only on 64-bit Linux it can with a reasonable effort
be ported to other platforms as well. Our work yet again
demonstrates the expressive power of C++ and its ability
to provide enough features to implement system-level func-
tionality on a user level.

Implemented in our library garbage collection is precise in
the sense that it can correctly identify all managed pointers
and thus capable to reclaim all unreferenced memory. We
also describe a conventions which provide safety property
of our garbage collection. Finally, our library is compatible
with conventional manual memory management at the price
of more complex safety requirements.

The performance of garbage collection is our primary con-
cern since the slowdown imposed by our library on an end-
user programs sometimes becomes unreasonable. As this
implementation is virtually our first attempt we presume it
can be optimized to be on a par with performance of other
smart pointer libraries.

8. REFERENCES
[1] Daniil Berezun. Root Set Identification and

Maintenance for Garbage Collection (in Russian) //
JetBrains Programming Languages and Tools
Laboratory Reports, Issue 1, 2013.

[2] Richard Jones, Rafael Lins. Garbage Collection:
Algorithms for Automatic Dynamic Memory
Management. John Wiley & Sons, Inc., 1996.

top-down bottom-up
number of trees tree height non-GC time (msec) GC time (msec) non-GC time (msec) GC time (msec)

1 26 6582 14671 6798 13649
4 25 14594 31276 14163 28964
16 22 6630 15926 6833 13765
32 21 6578 15280 6870 16311
128 20 13961 13619 14414 28344
512 18 14235 32564 14269 28391
4096 15 14336 32653 14862 28734

1048576 4 1568 3579 1640 3299

Figure 2: Smart pointers and root set maintenance overhead evaluation

top-down bottom-up
number of trees tree height non-GC time (msec) GC time (msec) non-GC time (msec) GC time (msec)

1 26 6582 56667 6798 57810
4 25 14594 78024 14163 77853
16 22 6630 54142 6833 62863
32 21 6578 71816 6870 70776
128 20 13961 101172 14414 114022
512 18 14235 141012 14269 126422
4096 15 14336 135879 14862 117410

1048576 4 1568 14671 1640 14744

Figure 3: Library overhead evaluation

[3] Richard Jones, Antony Hosking, Eliot Moss. The
Garbage Collection Handbook: The Art of Automatic
Memory Management. Chapman & Hall/CRC, 2011.

[4] Alexander Samofalov. Mark-and-Sweep Garbage
Collector Implementation for LLVM (in Russian).
Term paper, Department of Software Engineering,
Faculty of Mathematics and Mechanics, St. Petersburg
State University, 2014.

[5] Liana Bakradze. Garbage Collection Invocation
Discipline (in Russian). Term paper, Department of
Software Engineering, Faculty of Mathematics and
Mechanics, St. Petersburg State University, 2014.

[6] Erich Gamma, Richard Helm, Ralph Johnson, John
Vlissides. Design Patterns. Elements of Reusable
Object-Oriented Software. Pearson Education, 1994.

[7] Joel F. Bartlett. A Generational, Compacting
Garbage Collector for C++ // ECOOP/OOPSLA
Workshop on Garbage Collection in Object-Oriented
Systems, 1990.

[8] Hans-J. Boehm, Mike Spertus. Garbage Collection in
the Next C++ Standard // Proceedings of the
International Symposium on Memory Management,
2009.

[9] Igor Semenov. Smart Pointers in C++ (in Russian) //
RSDN Magazine, No. 1, 2008.

[10] Herbert Schildt. The Art of C++. The McGraw-Hill
Companies, Inc., 2004.

[11] Bjarne Stroustrup. Programming: Principles and
Practice Using C++. Addison-Wesley, 2009.

[12] Andrei Alexandrescu. Modern C++ Design: Generic
Programming and Design Patterns Applied.
Addison-Wesley, 2001.

[13] John R. Ellis, David L. Detlefs. Safe, Efficient
Garbage Collection for C++ // Proceedings of the 6th
Conference on USENIX Sixth C++ Technical

Conference, Vol. 6, 1994.

[14] William E. Kempf. A Garbage Collection Framework
for C++. http://www.codeproject.com/Articles/912
/A-garbage-collection-framework-for-C.

[15] Herb Sutter. A Design Rationale for C++/CLI //
http://www.gotw.ca/publications/C++CLIRationale.pdf,
2006.

[16] Information Technology — Programming Languages
— C++. ISO/IEC 14882:2011.

