
BURS-based Instruction Set Selection

Dmitri Boulytchev
St.Petersburg State University

Universitetskii pr., 28
St.Petersburg, Russia

db@tepkom.ru

ABSTRACT
Application-specific processors (ASIPs) look very promis-
ing in the domain of embedded systems since they comprise
both flexibility of programmable device and efficiency of
application-specific hardware. A number of approaches for
automatic application-specific instruction set design were in-
troduced during last years. We apply BURS technique that
is commonly used for retargetable codegeneration to this
problem. As a result the simple algorithm is presented that
generates both instruction set and assembler code from the
source program; this algorithm can be used for retargetable
codegeneration as well.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based
Systems]: Real-time and embedded systems; D.3.4
[Programming Languages]: Processors—retargetable
compilers

General Terms
Algorithms, Design

Keywords
BURS, embedded systems, instruction set design, retar-
getable compilation

1. INTRODUCTION
Two main tasks have to be solved during development of

embedded system based on application-specific instruction
set processor. On the one hand the suitable architecture has
to be developed; on the other hand compiler has to be retar-
geted to this architecture. Solving these tasks independently
one may surprisingly discover that the problem of efficient
code generation became undesirably hard. The reason is
obviously that the compiler has to generate good code for
any program; so compiler retargeting to application-specific
architecture is an over-generalization of the initial problem.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

The one way to avoid this glitch is to synthesize machine
code together with an appropriate instruction set directly
from source application; therefore the instruction set selec-
tion problem comes rise. Many different approaches have
been developed in this area; we suggest yet another one.

Bottom-Up Rewrite Systems (BURS) is a simple con-
ventional model for retargetable codegeneration. Crafting
BURS to synthesize both machine code and instruction set
we came up with an algorithm that seems to be good for
prototyping: for given instruction-set constraint it provides
an instruction set as a set of tree patterns that minimizes
the cost of the machine program among all instruction sets
satisfying that constraint. The algorithm can be used with-
out any detailed knowledge of hardware properties. It is not
a drawback since these properties are not yet clarified due
to lack of the hardware.

2. RELATED WORKS
In general sense one may consider instruction set selection

as a mapping

P → (A, IS)

where P and A — source and target programs correspond-
ingly, IS — instruction set (machine language). We also
need this mapping to be semantic correct, that is

[P]L = [A]IS

where [P]L and [A]IS denote semantics of a program P in
the source language L and semantics of a program A in
target language IS respectively. Finally an instruction-set
selection is said to be optimal iff it minimizes the value

α ×C(A) + (1− α)× C ′(IS)

where C(A) is a cost of target program, C ′(IS) is a cost
of instruction set, and 0 ≤ α ≤ 1 is some coefficient to con-
trol a tradeoff between simplicity of an instruction set and
simplicity of a program.

The above formulation is not conventional; however many
works on instruction-set generation fit it. Instruction set
synthesis for piplined architectures is addressed in [14, 13].
For given parameterized pipelined microarchitecture and the
set of benchmarks the design of instruction set is considered
as a sheduling problem. To control the tradeoff between in-
struction set and program quality number of cycles in the
program and number of instructions in the instruction set

Figure 1: An example of tree grammar, ground tree and its partition.

are used. Sheduling problem is solved by simulated anneal-
ing algorithm.

Another approach [19] uses combined representation of
datapath and instruction set model. Bundling technique is
explored to couple sequencies of micro-operations and con-
struct datapath. Initial datapath parts are taken from a
predefined library; profiling is performed to determine fre-
quently occuring operation sequencies.

Template generation as a way for instruction set selection
is considered in [15, 3]. Templates are repeated occurencies
of possible interdependent nodes and edges in a dataflow
graph. Two types of templates are identified: sequential and
parallel. Templates are built iteratively starting from pairs
of adjacent nodes; initially most frequent pairs are selected.
All selected templates are combined into supernodes; there-
fore DAG isomorphism algorithm is used to detect higher-
order templates.

Another graph-based approach to instruction-set selection
is presented in [6]. All reasonable patterns with regard to
the set of constraints are enumerated to collect instruction
candidates. Instruction set selection guided by some cost
function is then performed. Finally the target application is
mapped into the selected patterns by binate covering algo-
rithm. The similar approach is used in [4].

3. TREE GRAMMARS AND BURS
Our approach to instruction set selection is essentially

based on tree grammars and BURS theory so we have to
introduce some formal notions.

Tree grammar is a context-free grammar G = (N, T, S,R)
where N and T are finite sets of nonterminals and terminals,
S ∈ N — starting nonterminal, R — set of rules of the form

K : p

where K ∈ N — nonterminal, p — tree pattern, defined as
follows:

1. x is a tree pattern where x ∈ T ;

2. K is a tree pattern where K ∈ N ;

3. x(p1, . . . , pk) is a tree pattern where x ∈ T and all pi
are tree patterns.

Informally speaking tree pattern is an (ordered) tree with
interior nodes labeled with terminals and leaves labeled with
terminals or nonterminals. A ground tree is a pattern with-
out nonterminal-labeled leaves.

While ordinary “linear” grammars define languages as a
sets of words tree grammars define languages as a sets of
ground trees. Similarly to the ”linear” case one may define
transition relation p

r→ q for rule r and two patterns p and
q as follows:

p
r→ q iff q = p[l← t]

where r is K : t, l — leaf of p with label K, p[l ← t]
— substitution of l with t. The language defined by tree
grammar G is the set of ground trees

L(G) = {t : S →∗ t}
where “→∗” is a reflexive-transitive closure of “→”. More
datailed description of tree languages and automata theory
can be found in [5].

For any ground tree t ∈ L(G) its derivation corresponds
to some partition by patterns of G (see Figure 1). This
observation explains why tree grammars are used as a con-
vinient formal model for instruction selection problem: if
we treat patterns of grammar as machine instructions and
nonterminals as storage classes then any derivation of the
tree corresponds to some legal instruction selection. Under
these considerations the problem of optimal instruction se-
lection for tree is essentially the problem of finding least-cost
derivation in tree grammar with weighted rules.

Least-cost derivation can be found by dynamic program-
ming algorithm that is in fact generalization of Aho-Johnson
algorithm for finding optimal code for expression trees [2];
unlike the latter one it does not yield optimal register allo-
cation. Hereafter we assume that tree grammar is presented
in the following simplified form:

1. there are no rules that differ only by cost;

2. there are no chain rules;

3. each pattern is either x or x(L1, . . . , Lk), x ∈ T ,
Li ∈ N .

This assumption actually does not restrict class of defining
languages but slightly simplifies the presentation.

The search is performed in two stages. During the first
one, labeling, all possible rules are applied in bottom-up
manner and costs of all derivations are calculated as
presented below:

Label (t) :
if t - leaf with label x

then
mark t with all triples (K, r, c)
where r is rule K:x with cost c

else if t - interior node with label x
and immediate descendants t1, . . . , tk

then
for each ti do Label (ti);
mark t with all triples (K, r, c)
where r is rule K : x(L1, . . . , Lk) with cost c0,
each ti is marked with triple (Li, ri, ci) and
c = c0 + c1 + · · ·+ ck — minimal cost
among all such rules for K

It can easily be shown that some node v is marked by this
algorithm with triple (K, r, c) if and only if the subtree with
root v is derived from nonterminal K with minimal cost c
and the first rule of this derivation is r.

During the second stage, reduce, least-cost derivation is
reconstructed by top-down walk:

Reduce (t, K) :
select triple (K, r, c) from all marks of t;
add application of rule r to t into derivation;
if t - interior node with label x

and immediate descendants t1, . . . , tk,
and r is K : x(L1, . . . , Lk)

then
for each ti do Reduce(ti,Li)

Here we assume that the root of the tree is reduced with
starting nonterminal.

Application of tree grammars to pattern matching and
codegeneration is discussed in more details in [12, 1, 9, 10].
Due to work of Pelegŕı-Llopart and Graham [18] this ap-
proach is oftenly being referred to as BURS (Bottom-Up
Rewrite System) although some authors claim they are dif-
ferent [17, 16].

4. INSTRUCTION SET SELECTION AS A
BURS PROBLEM

As we have seen in the previous section optimal instruc-
tion selection for a tree can be considered as a search of
least-cost derivation in weighted tree grammar. Patterns of
the grammar play role of individual machine instructions;
any derivation introduces partition of the source tree. The
inverted claim obviously does not always hold: there may
be no derivation in given grammar that corresponds to arbi-
trarily choosen partition. Since any partition corresponds to
some instruction selection with regard to some instruction
set our first task is to build for given tree a grammar that
allows all its patritions.

Definition 1. A tree p is said to be patrial subtree of the
tree t if and only if p[l1 ← t1, . . . , lk ← tk] is a subtree of t for
some leaves li and some trees ti. In particular any subtree
of t is its partial subtree. Clearly, the elements of arbitrary
partition are partial subtrees.

Definition 2. Let {pi} be a set of trees. A pair (C, µ)
where C is a tree, µ : nodes(C)→ {pi} is said to be partition
of tree t if and only if

1. ∀x ∈ nodes(C) deg(x) = |leaves(µ(x))|;

2. C[µ] = t where C[µ] is defined as follows:

• x[µ] = µ(x) if x ∈ leaves(C);

• x(t1, . . . , tk)[µ] = µ(x)[l1 ← t1[µ], . . . , lk ← tk[µ]]
where l1, . . . , lk are all leaves of µ(x).

Informally speaking the partition of t is a tree C such that
“expansion” of all its nodes into patterns of {pi} turns it
into t; each node v of C is expanded into pattern µ(v). The
height of partition (C, µ) is the height of C.

Theorem 1. Let S → p1 → p2 → · · · → t be a derivation
sequence of tree t in grammar G. Then there exists partition
(C, µ) of t by patters of G.

Proof. By straightforward induction on length of deriva-
tion sequence.

Definition 3. Tree grammar Gt = (N, T, S,R) is said to
be enumerating grammar for t if and only if

1. for each patrial subtree p of t there is a rule

S : p[l1 ← S, . . . , lk ← S]

in Gt where l1, . . . , lk are all leaves of p;

2. there is a rule S : x for any x ∈ T which is used as a
label of some node of t.

Theorem 2. For any partition of tree t there exists cor-
responding derivation of t in enumerating grammar Gt.

Proof. By straightforward induction on partition
height.

This property of enumerating grammars can be inter-
preted as follows: for given tree t they describe all possi-
ble instruction selections in all possible instruction sets. So
least-cost derivation in enumerating grammar is the least-
cost instruction selection among all instruction sets.

The main restriction of the approach being discussed is in-
troduced by limitation of cost function that has to be com-
pliant with dynamic programming algorithm. It is quite
simple to estimate cost of the program and quite hard to es-
timate the cost of instruction set with function of that kind.
On the other hand we can not just skip instruction set cost.
For example the standard cost function of program is its
length; obviously the shortest program for given tree among
all possible instruction sets contains one instruction — the
tree itself. To avoid such a degenerative instruction sets from
being considered we restrict the set of patterns that can be
used in enumerating grammars by mean of some constraint.
So such a constraint is a parameter of our algorithm.

To construct enumerating grammar we first construct
auxilliary grammar G̃t with the following properties:

1. G̃t contains the rule S : x for each x ∈ T ;

2. for each nonterminal K, K 6= S, G̃t contains exactly
one rule;

3. for arbitrary partial subtree p the pattern

p[l1 ← S, . . . , ln ← S]

has a derivation in G̃t where {l1, . . . , lk} are all leaves
of p.

Figure 2: An example of enumerating grammar construction.

The grammar G̃t can easily be built via bottom-up
breadth-first traversal of t. For each node v with terminal
label x we first add a rule S : x into G̃t; then we apply
all rules exactly like during labeling stage of BURS al-
gorithm; finally we enrich G̃t with the rules of the form
K : x(L1, . . . , Lk), where K — new nonterminal, Li —
terminal mark of i-th immediate successor of v and there is
no rule with the same pattern yet. In addition we skip all
patterns that do not satisfy instruction set constraint. The
exact procedure is shown below:

Enumerate (t, C):
R = ∅;
for all v ∈ t in bottom-up breadth-first traversal do

if v — leaf with terminal label x
then

R = R ∪ {S : x};
label v with nonterminal S

else if v — interior node with terminal label x
and immediate descendants t1, . . . , tk

then
for all L1, . . . , Lk where Li labels ti do

if K : x(L1, . . . , Lk) ∈ R for some K
then label v with K
else if x(L1, . . . , Lk) satisfies C

then
R = R ∪ {K′ : x(L1, . . . , Lk)}
where K′ — new nonterminal;
label v with K ′

The grammar built by above algorithm contains a sepa-
rate nonterminal for each nontrivial patrial subtree. We can
easily estimate number of all patrial subtrees in the tree of
degree d in which all paths from root to leaves have length
h.

Let S(t) be the number of all partial subtrees in tree t,
R(t) — the number of those patrial subtrees that contain
root of t. Then

S(t) = 1 +R(t) +
dX

i=1

S(ti)

R(t) =
dY

i=1

R(ti)

where ti are all subtrees of root of t; for leaf t0 R(t0) = 1
and for a tree t1 of height 1 R(t1) = 2. So,

R(t) =

8
>><
>>:

1 , h = 0
2 , h = 1

(. . . ((2d + 1)d + 1)d + · · ·+ 1)d| {z }
h−1

, h ≥ 2

that yields a recurrent formula for number of all partial sub-
trees and the complexity estimation of the algorthm.

Clearly for each nonterminal K in G̃t except S the follow-
ing is true:

1. there is the only one rule for K;

2. there is the only one partial subtree p such that

K →∗ p[l1 ← S, . . . , lk ← S]

where {l1, . . . , lk} are all leaves of p.

So replacement rule for each nonterminal K 6= S with rule

K →∗ p[l1 ← S, . . . , lk ← S]

finalizes construction of the grammar Gt. An example of
algorithm run and final transformation is shown on Figure 2.
The underlined rule is the only rule in this example that has
to be replaced.

After construction of the enumerating grammar one may
apply conventional BURS algorithm described in the pre-
vious section to perform instruction selection1. The costs
of the rules may be assigned in the commonly used man-
ner; for example to minimize code length cost of 1 has to
be assigned to the all rules. Least-cost derivation for enu-
merating grammar yields best instruction selection among
all instruction sets with regard to constraint used during
grammar construction. To select instruction set we finally
have to move all the rules not participating in the least-cost
derivation out of the grammar.

1Note that the grammar Gt formally does not satisfy the
restrictions we have introduced for BURS algorithm; how-
ever the grammar G̃t does so we may use it instead with the
same result.

Table 1: Evaluation Results for the DSPstone Benchmarks
benchmark size triad dual mem mem/mul no constraint

I A R I A R I A R I A R
complex multiply 58 5 38 11 5 36 3 5 38 11 4 34 9
complex update 78 6 62 14 6 50 4 6 62 14 5 46 13
convolution 70 6 42 8 5 39 2 6 42 8 5 39 7
dot product 78 6 36 9 6 33 4 6 36 9 5 32 8
fir 83 8 54 12 7 48 2 8 54 12 7 48 11
fir2dim 149 8 147 23 8 136 4 8 147 23 6 132 21
biquad one section 86 8 57 14 7 48 2 8 57 14 7 48 14
biquad N sections 117 12 91 20 12 76 4 12 91 20 12 73 19
lms 156 9 77 15 9 65 4 9 77 15 8 64 14
matrix 76 9 87 18 9 74 4 9 87 18 8 72 17
matrix1x3 130 6 38 10 6 35 4 6 38 10 5 34 9
n complex updates 89 7 101 20 7 89 4 7 101 20 6 85 19
n real updates 69 6 56 11 6 53 4 6 56 11 5 52 10
real update 66 5 28 5 4 25 4 5 28 5 3 24 4
fft 125 38 235 41 42 189 4 35 230 41 42 184 40
g721 866 84 1547 75 149 1049 3 101 1332 75 136 1002 73

With regard to formal definition given in Section 2 the
approach in question provides an optimal instruction set
selection for any BURS-compliant cost function for target
program and the following cost function for instruction set:

C(IS) =


0 , IS satisfies the constraint C
∞ , otherwise

where C is the constraint used during enumerating grammar
construction phase. We may also note that our algorithm
finds instruction set with minimal number of instructions
if any nonterminal has unique occurence in the derivation
defined by enumerating grammar; unfortunately this obser-
vation has rather a theoretic value.

5. EVALUATION
Described algorithm was implemented on top of ASDL-

port of the lcc compiler [8, 7, 11]. Additionally to instruction
set selection we had to implement local register allocator to
store intermediate values and build a program from parti-
tion. The classic algorithm of Aho and Johnson [2] was used
for this purpose.

We ran our algorithm for the DSPstone benchmark [20].
Four types of constraints were used:

1. triad — the number of nodes in pattern is limited by 3
that forces instruction set selector to generate triad-
based instruction set;

2. no constraint — any pattern is allowed so each sepa-
rate tree becomes machine instruction;

3. dual mem — no more than one occurence of multi-
plicative, logic or shift operations and no more than
two occurencies of memory access operations are al-
lowed in the pattern;

4. mem/mul — same as the above, but no simultane-
ous memory access operation and multiplication as al-
lowed.

The length of the generated program was used as its’ cost
function.

The results of the evaluation are shown in the Table 1.
Here I, A, and R stand for instruction-set size, machine
program length, and number of registers. The number of
registers is relatively large since we did not perform any
clevel global register allocation and assign a dedicated reg-
ister for each local variable, parameter or temporary. Such
a naive allocation does not affect the instruction set selec-
tion results. Since our algorithm works only on basic blocks
we use some predefined set of control flow instructions to
express the control flow in the generated program. Despite
the complexity of the algorithm running time for all these
benchmarks did not exceed few seconds.

In the Figure 3 the examples of generated code for
convolution benchmark are shown. Choosing various con-
straints one may perform fine-tuning of the instruction set
in any desirable way; the algorithm is completely insensitive
to the nature of the constraint so any test function may be
implemented for this purpose.

6. DISCUSSION AND FUTURE WORK
Several drawbacks are natural to the presented approach.
First of all the model of tree covering looks restrictive

since even within basic blocks any program is generally rep-
resented by a DAG. One has to perform common expression
elimination to turn this DAG into forest. We may argue
that due to simplicity of the algorithm it is desirable to try
various ways of common subexpression elimination prior to
instruction set selection.

The second drawback is that each instruction is implied
to be a tree. We think there is no hope to adjust this al-
gorithm to handle instructions as DAGs; however we may
suggest to perform instruction set optimization to join sim-
pler instructions into complex ones. So our algorithm may
be considered as a mean of micro-code generation that is
less ad-hoc.

To illustrate the possible way to improve generated in-
struction set by postpass optimization consider the following
function:

int f (int x[], int y[], int i) {

return x[i] + y[i];

}

Figure 3: An Example of Codegeneration Results

Source Code:

int main()

{

static int x[16], h[16];

int y, i, *px = x, *ph = &h[15];

y = 0;

for (i = 0; i < 16; ++i)

y += *px++ * *ph--;

return y;

}

Generated Code Under Different Constraints:

no constraint

r2 = $x

r3 = $h + %60

r4 = %0

r0 = r4

r1 = r4

$loop: r5 = r2

r2 = r5 + %4

r6 = r3

r3 = r6 + %-4

r0 += [r5] * [r6]

r1 += %1

r1 ? %16

jlt $loop

return

no simultaneous

indirection and

multiplication

allowed

r2 = $x

r3 = $h + %60

r4 = %0

r0 = r4

r1 = r4

$loop: r5 = r2

r2 = r5 + %4

r6 = r3

r3 = r6 + %-4

r7 = [r5]

r8 = [r6]

r0 += r7 * r8

r1 += %1

r1 ? %16

jlt $loop

return

no simultaneous

addition and

multiplication

allowed

r2 = $x

r3 = $h + %60

r4 = %0

r0 = r4

r1 = r4

$loop: r5 = r2

r2 = r5 + %4

r6 = r3

r3 = r6 + %-4

r7 = [r5]

r8 = [r6]

r7 *= r8

r0 += r7

r1 += %1

r1 ? %16

jlt $loop

return

The following machine program is generated by our algo-
rithm by now:

r0 = r3 << %2

r4 = [r0 + r1] + [r0 + r2]

return

Note that the common subexpression i << 2 occu-
pies dedicated register r0; note also that the instruction
r4 = [r0 + r1] + [r0 + r2] in the presented program de-
pends on values of four registers while generally contains
five arguments. Taking these considerations into account
we may first specialize the instruction and then substitute
occurence of register r0 with corresponding expression. This
transformation yields new instruction

rx = [ry << %2 + rz] + [ry << %2 + rt]

where the subexpression ry<<%2 is shared.
The cost function for instruction set in the current im-

plementation is quite poor; it does not even allow to select
shortest instruction set among all sets that yeild the same
program quality. We think though that the algorithm can
be extended to handle more sensible instruction-set costs.

All of these issues are subjects of future research.
On the other hand presented approach has some merits.

It allows fast synthesis of instruction set and machine code
without any special knowledge of microarchitecture; so it
can be used to discover some intrinsic properties of the al-
gorithm.

It produces proven-optimal code with regard to all for-
mulated restrictions. Note that register allocator may be
adjusted to aviod introducing anti-dependencies into gen-
erated code; so the scheduling will not require instruction
selection change.

Finally for fixed instruction set IS this algorithm can eas-
ily be turned into code generator: it is enought to specify
constraint of the form p ∈ IS, where p is an instruction can-
didate.

7. REFERENCES
[1] A. V. Aho, M. Ganapathi, and S. W. Tjiang. Code

generation using tree matching and dynamic
programming. ACM Transactions on Programming
Languages and Systems, 11(4):491–516, 1989.

[2] A. V. Aho and S. C. Johnson. Optimal code
generation for expression trees. Journal of the ACM,
23(3):488–501, 1979.

[3] P. Brisk, A. Kaplan, R. Kastner, and M. Sarrafzadeh.
Instruction generation and regularity extraction for
reconfigurable processors. Proc. of the International
Conference on Compilers, Architecture, and Synthesis
for Embedded Systems, pages 262–269, 2002.

[4] N. Clark, H. Zhong, and S. Mahlke. Processor
acceleration through automated instruction set
customization. Proc. 36th International Symposium on
Microarchitectures, 2003.

[5] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard,
D. Lugiez, S. Tison, and M. Tommasi. Tree Automata
Techniques and Applications.
http://www.grappa.univ-lille3.fr/tata/, 2002.

[6] J. Cong, Y. Fan, G. Han, and Z. Z. Z.
Application-specific instruction generation for

configurable processor architecture. Proc. of the 12th
International Symposium on Field Programmable Gate
Arrays, pages 183–189, 2004.

[7] C. W. Fraser and D. R. Hanson. A retargetable
compiler for ANSI C. ACM SIGPLAN Notices,
26(10):29–43, 1991.

[8] C. W. Fraser and D. R. Hanson. A Retargetable
C Compiler: Design and Implementation.
Addison-Wesley, 1995.

[9] C. W. Fraser, D. R. Hanson, and T. A. Proebsting.
Engeneering a simple, efficient code generator
generator. ACM Letters on Programming Languages
and Systems, (3):213–226, 1992.

[10] C. W. Fraser, R. R. Henry, and T. A. Proebsting.
BURG — fast optimal instruction selection and tree
parsing. SIGPLAN Notices, 27(4):68–76, 1992.

[11] D. R. Hanson. Early experience with ASDL in lcc.
Software — Practice & Experience, 29(5):417–435,
1999.

[12] C. M. Hoffmann and M. J. O’Donnell. Pattern
matching in trees. Journal of the ACM, 29(1):68–95,
1983.

[13] I. J. Huang and A. M. Despain. Generating instruction
sets and microarchitectures from applications. Proc. of
the IEEE/ACM International Conference on
Computer-Aided Design, pages 391–396, 1994.

[14] I. J. Huang and A. M. Despain. Synthesis of
instruction sets for pipelined microprocessors. Proc. of
the 31th ACM/IEEE Design Automation Conference,
pages 5–11, 1994.

[15] R. Kastner, A. Kaplan, S. O. Memik, and
E. Bozorgzadeh. Instruction generation for hybrid
reconfigurable systems. ACM Trans. on Design
Automation of Electronic Systems, 7(4):605–627, 2002.

[16] A. Nymeyer and J. P. Katoen. Code generation based
on formal BURS theory and heuristic search. Acta
Informatica, 34(8):597–635, 1997.

[17] A. Nymeyer, J. P. Katoen, Y. Westra, and H. Alblas.
Code generation = A* + BURS. In Computational
Complexity, pages 160–176, 1996.

[18] E. Pelegŕı-Llopart and S. L. Graham. Optimal code
generation for expression trees: An application of
BURS theory. In Proc. of the Fifteenth Ann. ACM
Symp. on Principles of Programming Languages,
pages 294–308, 1988.

[19] J. V. Praet, G. Goossens, D. Lanneer, and H. de Man.
Instruction set definition and instruction selection for
ASIPs. Proc. of the 7th ACM/IEEE International
Symposium on High-Level Synthesis, pages 11–16,
1994.

[20] V. Zivojnovic, J. M. Velarde, C. Schlaeger, and
H. Meyr. DSPstone: A DSP-oriented benchmarking
methodology. Proc. International Conference on
Signal Processing Applications and Technology, 1994.

