
On project-speci�c languages and their application in reengineering

Dmitry Boulychev, Dmitry Koznov, Andrey A. T erekhov

St. P etersburgState University, LANIT-TERCOM

198504, Russia, St. P etersburg,Bibliotechnaya sq., 2

Abstract

We propose an appr oach for tuning reengineering
tools to particular projects. This appr oachis based
on the informal knowledge of the system, consisting
of speci�c usages of the programming language. We
illustr ate this process with examples from an industrial
project on PL/I to Java conversion.

1 Introduction

This article is based on the experience accumulated
by the authors during implementation and application
of an automated reengineering tool RescueWare. De-
velopment of this tool has been going on for the last
few years [1]. The idea of RescueWare is to pro vide
the complete functionality for reengineering of legacy
systems:

� F ramework for understanding legacy systems

� Knowledge mining including program slicing, cre-
ating data dictionaries for the system, redocu-
mentation etc.

� Generation of programs in modern languages
from the legacy code

Initially RescueWare Workbench was a simple lan-
guage converter, but during deployment it has be-
come clear that compiler technologies alone were in-
suÆcient, because any qualit yreengineering process
requires an activ e human participation. Therefore,
some legacy understanding and kno wledge mining
tools were gradually added to the initial set of tools.
Currently RescueWare is a fully-edged in teractiv e
reengineering technology.

There follo w ed industrial legacy reengineering
projects, which con�rmed the validity of our assump-
tions. However, in most projects we encountered dif-
�culties, because our tools were unable to extract the
suÆcient amount of information from legacy sources.

Human developmers always extract more subtle
bac kgroundinformation on the legacy system, than
the automated data mining processes. F or exam-
ple, semantics of variables, naming conventions, com-
ments, structure of source �les and other similar data
which change from project to project. This informal
knowledge does not a�ect the execution of programs,
so it goes unobserved during compilation or analysis
with traditional methods. But in reengineering this
kind of knowledge is often more useful than the exact
semantics of language constructions. This is why the
standard compiler approaches may be inappropriate
for reengineering.

In this paper w econsider one type of this infor-
mal knowledge represented by recurring usages of pro-
gramming language constructs in a project. We ar-
gue that most large projects contain repetitive usages
of some patterns, and these patterns can be de�ned,
understood (i.e., attributed with their meaning) and
used as single language constructs in a new project-
speci�c language.

T o illustrate one possible application of this ap-
proach, let us consider the follo wing scenario which
often happens in language conversion projects. Sup-
pose w eexamine a legacy system written in an old
programming language, planned for conversion into a
more modern language. Suc h systems are almost al-
w ays heavily inuenced by the limitations of the lan-
guage in which they w erewritten. The legacy lan-
guage has perhaps a restricted pool of available ex-
pressions, so that much code is spent on the features
not directlysupported b y the language. As a result,
the system contains plenty of such auxiliary code. It
can be concentrated in a single kernel-like module or
scattered throughout the system.

When it comes to conversion, it is likely that the
target language has in-built features eliminating the
need for most auxiliary code. For instance, Ja vaor
Visual Basic both have a richer set of string handling
functions than C does, so a considerable simpli�ca-
tion of code must be expected in conversions from
C to either of these languages. To ac hieve this goal,

Proceedings of the Sixth European Conference on Software Maintenance and Reengineering (CSMR�02)
1534-5351/02 $17.00 © 2002 IEEE

the converter must analyse the code containing char*
variables and look for patterns that can be replaced
with the corresponding String methods in the target
languages.

Note that w e are always looking for patterns per-
forming functions absent in the source language (but
present in the target one). Referring to the terminol-
ogy introduced in [2], here we are dealing with conver-
sion of constructs that were emulated in the legacy lan-
guage to the native constructs in the target language.
Abstractly speaking,w e can consider these emulated
constructs of the legacy language as native constructs
of some higher-level virtual language. It is clear that
this virtual language reects the inner workings of the
legacy system muc h better than the original one and
that it can be used in reengineering process.

In this paper w edescribe an e�ort to de�ne this
virtual project-sp eci�clanguage in the reengineering
project conducted by our team. The goal of the
project was to convert a legacy application of approx-
imately 70,000 lines of code from PL/I to Ja va. An
approach stated in this article w asdev elopedto en-
hance the qualit y of the generated code. In the con-
clusion, w edescribe our vision of the\ideal" process
of reengineering, where the informal knowledge of the
engineers is taken into account during further trans-
formations of the legacy system.

1.1 Related Works

It is often desirable to write the transformation
rules in a formal notation for use in other projects.
There exist a few equivalen tly suitable notations
| program plans [3], transformation rules [4] and
clich�es [5]. Each of these methods employs some kind
of pattern-matching for application of the stored rules
to a piece of code [6].

The patterns are usually stored in an intermediate
language. An alternative to in termediate languages,
native patterns, were proposed in [7] as a formalism
for recording patterns in terms of the source language.
The authors reason that it is more convenient and
clear notation than any specially designed in terme-
diate representation. In our opinion this approach is
somewhat restrictive, because it does not allow for the
abstractions on a higher level than those present in the
source language.

We propose a project-speci�c language inthis pa-
per, which is an extension of the native patterns idea.
Our idea is not only to de�ne syntactic patterns com-
monly used in the source programs, but also to assign
meanings to them and view them as language entities

in their own right. As far as we know, this approach
has not been applied in practice before.

P apers describing methods of extracting the infor-
mal knowledge from programs (see [8, 9, 10 , 11]) rarely
discuss ho wthis kno wledgecould be used for legacy
code transformation. This may be due to the fact that
the informal knowledge and its representation change
from system to system, and therefore automated ap-
plication of this knowledge makes sense only for the
the duration of one project.

The issue of more eÆcient searc h patterns in the
source system for the purposes of transformation has
been already raised in article [12] and in a later book
dedicated to Programmer's Apprentice project [13].
The problem is that there may not be more generalized
templates for extraction of higher-level abstractions
from the legacy code. In this paper w epropose not
to look for the patterns viable for the whole language,
but only for used in one particular project.

1.2 Acknowledgements

We would like to thank Chris V erhoef(F reeUni-
versity of Amsterdam) and the anonymous reviewers
of the preliminary version of this paper for their com-
ments and advice. We would also like to thank Karina
T erekhova (Jipeq eSourcing Oy, Finland) for her in-
valuable help during improvement of the �nal version
of this paper.

1.3 Organization of the paper

Section 2 discusses what is informal knowledge and
how it is used. Section 3 describe in some detailthe
di�erent representations of project-speci�c language
and its application to language conversion. Section
4 is the discussion. The paper ends with conclusions
and an appendix.

2 F ormal semantics and informal

knowledge

High-level programming languages and compilers
were introduced to close the semantic gap between hu-
man language and computer assembler language. All
redundant information, that does not a�ect the exe-
cution of the program, is ignored by the compiler at
translation. Therefore, w e can say that formal in-
formation consists of language elements a�ecting the
operational semantics, and informal information rep-
resen ts all other elements of the program which serve
to enhance the human understanding of the code.

2

Proceedings of the Sixth European Conference on Software Maintenance and Reengineering (CSMR�02)
1534-5351/02 $17.00 © 2002 IEEE

The informal part of a program is important not
only during dev elopment, but also for later mainte-
nance and possible reengineering. Alterations of the
program after its initial completion, suc h as adding
corrections during the maintenance period or addition
of new programmers to the maintenance team usually
require renewal of program understanding.

We shall focus our attention on a speci�c type of in-
formal knowledge, namely, the language constructions
used in a special way in a project. Let us start with a
small example in PL/I that has been adapted from an
industrial application. The program presented below
simulates support for object{oriented constructions by
means of PL/I preprocessor. This idea may seem a bit
arti�cial, but there are several programming languages
built as preprocessor layers over another language (for
example, Ratfor [14] and Objective C [15]), and some-
times this approach is used in real legacy applications
to implement the mechanisms lacking in the source
language.

%include maclib;

p: proc options (main);

CLASS (point);

PROPERTY (x) AS (fixed bin);

PROPERTY (y) AS (fixed bin);

ENDCLASS;

MEMBER(get_x) OF(point) RETURNS(fixed bin);

return (THIS.x);

ENDMEMBER;

MEMBER(get_y) OF(point) RETURNS(fixed bin);

return (THIS.y);

ENDMEMBER;

MEMBER(set_x) OF(point) TAKES(value);

dcl value fixed bin;

THIS.x = value;

ENDMEMBER;

MEMBER(set_y) OF(point) TAKES(value);

dcl value fixed bin;

THIS.y = value;

ENDMEMBER;

dcl pnt like point;

INVOKE(set_x) FROM (pnt) PASSING (1);;

INVOKE(set_y) FROM (pnt) PASSING (2);;

dcl (x1, y1) fixed bin;

x1 = INVOKE(get_x) FROM (pnt);;

y1 = INVOKE(get_y) FROM (pnt);;

put list ('(', x1, ', ', y1, ')');

end;

In this example the names of macros and their pa-
rameters are typed in capital letters. The example
starts with inclusion of �le maclib, which implements
all macros used in this program (see also Appendix).
Then we de�ne class point, which contains t wo coor-
dinates x and y, and also has special access methods
for these variables. Finally, we de�ne variable of type
point and use functions set x and set y with some
parameters.

It is clear that the usual reengineering tools do not
cope very well with this kind of syn tax in a source
programs. In the w orst case, all peculiarities ofsyn-
tax will be removed at the preliminary stage of pre-
processing. Even in the best case, there will be no
w ay to capture this knowledge about the project and
to exploit it.

We can formulate several problems that hamper our
e�orts to create a general scheme of legacy systems
analysis:

� Source programs are usually written in a subset
of the language. This subset is sometimes hard
to de�ne formally, but possible to identify using
simple heuristics. Here w eunderstand \subset"
not as a �xed set of constructions, but rather as
a special way of their usage.

� Most legacy systems even tually lose some impor-
tan t information (missing �les, utilization of un-
speci�ed compiler environment etc.), so that the
formal analysis is not always possible.

� Programs can contain fragments written in a dif-
feren t programming language, which cannot be
analysed in terms of syntax and semantics of the
source language.

So one might say that eac h project is written in
its own language, consisting of peculiarities of the
source language, program and development environ-
ments, style conventions etc. This leads us to the idea
of analysing the project not in terms of the source
language, but in terms speci�c to the project itself.

3

Proceedings of the Sixth European Conference on Software Maintenance and Reengineering (CSMR�02)
1534-5351/02 $17.00 © 2002 IEEE

3 Iterative extraction of language spe-

ci�c to the project

Iterativ e customization of native patterns requires
as input a system written in a legacy language and
a reengineering tool, which can parse it and build an
in termediate representation of it. First step is to start
analysing the language constructions. Any prospec-
tive candidates found are added to the project-speci�c
language, so that each consecutive iteration increases
the number of language constructions and thus en-
hances the accuracy of analysis. The process of lan-
guage extension stops when no new constructions are
added.

Extraction of a project-speci�c language leads to
creation of a \bigger" language constructions on the
basis of the source programming language. We can
describe this process as replacement of some construc-
tions with a new ones, equivalent to them from the ap-
plication's point of view, and truncation of all unused
parts of the initial programming language.

Our �rst task is to formulate syntax, semantics and
pragmatics of this project-speci�c language in a way,
which will be the most convenient for further process-
ing. T o do this, w e ha veto decide where w ewill
store the information about the informal kno wledge
that is extracted during analysis of the legacy system.
Since we are going to use this information only during
reengineering process, we do not need to describe it as
yet another programming language. F or our purposes,
it is quite suÆcient to work with the internal represen-
tation of the program, so we decided to store all the
information about speci�cs of the project directly in
our reengineering tool, customizing it for large reengi-
neering projects. In our opinion, this approach is eco-
nomically justi�ed because of the huge size of most
legacy systems and the fact that most reengineering
projects are starting with updates to the existing mi-
gration tools anyway (for instance, to support the ex-
act dialect of the legacy language used in the system).

There are other approaches that employ quite the
con trary approach, i.e. that store all information
about the project in its source code. F or instance,
see [16] for description of sca�olding technique that
could be used to describe such extensions to the lan-
guage.

3.1 Legacy understanding and tool cus-
tomization

The knowledge about the project-speci�c language
can appear in the system in at least tw o di�erent
forms.

In the �rst case w e have syntactic extensions to
the language. We already quoted extensions de�ned
as macros, but there are other forms as well. For in-
stance, consider the follo wing fragment tak en from a
real PL/I application:

DCL ISPLINK ENTRY EXTERNAL

OPTIONS(ASM,INTER,RET CODE);

DCL TABEL CHAR(08);

CALL ISPLINK ('TBBOTTOM', TABEL);

...

CALL ISPLINK ('CONTROL ',

'ERRORS ','RETURN ');

...

CALL ISPLINK ('TBSORT ',

TABEL, '(OPKRNR,N,D)');

...

Here w eare dealing with a typical \open-ended"
application where extraction of knowledge in terms of
implementation language makes no sense, because as-
sembler function ISPLINK used in this program could
be regarded as a \magic wand" and its semantics could
not beextracted in terms of PL/I. Inthe mean time,
it is clear that this function simply extends source
language with additional functionality. Hence these
function calls have completely di�erent meaning com-
pared to usual PL/I function calls, even though from
the point of view of implementation language there is
practically no di�erence betw een them.

Syntactic extensions are usually local and quite
w ell-de�ned, so it is possible to represent them as ad-
ditional language constructions that are orthogonal to
the legacy language.

In other more complicated cases informal kno wl-
edge is spread over di�erent constructions of the lan-
guage and do not yield to a simple syntactic descrip-
tion (we call this t ype of informal knowledge semantic
extensions). In particular, they could be expressed in
a speci�c organization of control ow, rules of transfer-
ring data from one construction to another etc. Natu-
rally , these idioms could not be represented in a purely
sin tactic form (or at least, such representation would
be clumsy and overly complicated).

Let us illustrate this with the following example:

p: proc;

...

IF I<1 OR I>HBOUND(B)

THEN GOTO ERR_HANDLER;

4

Proceedings of the Sixth European Conference on Software Maintenance and Reengineering (CSMR�02)
1534-5351/02 $17.00 © 2002 IEEE

...

IF SQLCODE ~= 0 & SQLCODE ~= 100

THEN GOTO END_DEL;

...

END_DEL:

CALL B_1001_PROCESS_ERRO R;

ERR_HANDLER:

/* some code to handle

OutOfBounds exception */

...

end p;

In this example we have an implementation of ex-
ception handling that uses GOTO statements. Quick
examination of this and other programs show ed that
in this application all error handling routines are con-
centrated at the end of the corresponding procedures;
note that calls to separate error handling routines can
be also employed. None of the programs handles their
exception handling \inline" and thus we conclude that
the application is written in more or less structured
w ay.In fact, this approach to error handling is very
typical for older languages: sev eral languages, such
as COBOL, PL/I and BASIC, contained special con-
structions suc h as On Error GoTo for this function-
ality, though their usage was usually limited to some
prede�ned situations.

Now we can take advantage of this knowledge about
the project by adding it to the tool. Unfortunately,
w ecannot write it do wn as a syntax rule except in
the case of On Error GoTo construction, because gen-
erally our transformation of the program will be non-
local. The operations that should be performed with
procedures that contain the error handling are the fol-
lowing ones. We should remove the error chec ksaf-
ter eac h SQL statement and checks for index validit y
before accesing arrays. Instead w e should add new
constructions named ExceptionToCheck to the begin-
ning of procedure and also another new construction,
ExceptionToHandle, to the end of procedure. These
constructions w ouldemploy sev eral parameters that
describe the type of exception and possible conditions
of its appearance for the former and what should be
done to handle the exception for the latter.

It is clear that this kind of transformation requires
a mechanism that is stronger than simple syntax rule.
So we have to use t wo di�erent forms for storing the
extracted project-speci�c language. In the �rst case
w e can simply add new rules describing syntactic ex-
tensions to the grammar of the language. One might
say that in this case we have the project-speci�c lan-

guage in its explicit form. In the second case we rep-
resen t the new idioms in the form of rewriting rules
that are applied to the intermediate representation of
the program. This can be viewed as an implicit repre-
sen tation of the project-speci�c language. Naturally,
the latter approach is more general but also more la-
borious.

In both cases, the process of formalization of the
project-speci�c language is inherently manual, be-
cause it is not possible to predict in advance which
constructions of the source language will constitute
new idioms. So the process of \enriching" the lan-
guage inevitably depends on human engineers �nding
and writing down the special rules for a given legacy
system.

Nevertheless, we regard the process of updating the
reengineering tool to the project-speci�c language as
rather simple, especially compared to the complexity
of creating the initial reengineering tool and compared
to the complexity of a typical reengineering project.
Moreover, the updating process is fairly technical and
requires only the knowledge of typical techniques in
compiler construction and reengineering.

F or instance, the syntactic extensions are added to
the parser by means of adding new generalized con-
structions to the language grammar. This is similar
to the process of updating the parser in order to sup-
port a new dialect of the language. Usually, one of the
most diÆcult problems in this process is resolution of
conicts that appear during addition of new syntactic
rules to the grammar. But in our case this was not an
issue, since our PL/I parser was written using recur-
sive descent method. This design decision was made
because PL/I contains several features that could not
be properly supported by YACC:

� Some PL/I constructs require potentially in�nite
lookahead, which is not provided by YA CC;

� Another problematic feature of PL/I is that it
allo ws using keywords as identi�ers.

This simpli�cation aside, there exists a number of
syn tax description and modi�cation mechanisms that
could be used for quick implementation of new features
in a project-speci�c language. For instance, paper [17]
proposes a exiblesc heme thatenables easy updates
to the parsers of legacy languages. This scheme w as
originally devised as a method of supporting new di-
alects of the language, but it could be applied for our
purposes as well. T ermrewriting could be also re-
garded as quite technical are by now, though detailed
discussion of this method is beyond the scope of this

5

Proceedings of the Sixth European Conference on Software Maintenance and Reengineering (CSMR�02)
1534-5351/02 $17.00 © 2002 IEEE

Figure 1: Sc heme of language extraction

article (we refer readers to the work [18] for the thor-
ough account of this topic).

3.2 Updated scheme of the language ex-
traction process

Now we can summarize the process of language ex-
traction in a more detailed scheme (see Figure 1).

Creation of project-speci�c language consists of
sev eral stages. The �rst stage is front-end customiza-
tion, where w eextend the grammar by adding new
syntax rules. Application of this cusomized fron t-
end yields the initial in ternal representation (IR1),
where all idioms that can be expressed syntactically
are already reduced. Then this internal representation
goes through term rewriting stage, which completes
description of the project-speci�c language. The re-
sult of the term rewriting, denoted as IR2, is the �nal
in ternal representation of the project in its own lan-
guage. All further works on legacy understanding or
language conversion should be based on this interme-
diate representation.

Note that theoretically we can express all syntactic
extensions at the term rewriting stage and thus com-
pletely remove the parser customization phase, but in
our opinion this would only complicate the process.

3.3 Customized generation of target lan-
guages

De�ning project language and storing this kno wl-
edge in the reengineering tool is not really helpful un-
less w ecan use it. In this section w ewill sho who w
knowledge about project-speci�c language can be used
during con versionof the legacy system to new pro-
gramming languages.

It is w ell known that the conversion process is diÆ-
cult and even contradictory because of the di�erences
betw een source and target programming languages [2].
One of the �rst tasks during language con version is
to de�ne conversion strategy for every construction of
the source language. Usually this list of projections
is �xed once and for all, but this makes it impossible
to use our knowledge of conven tionsadopted in this
project, because our language con verter can operate
only in terms of the native constructions of the source
language. In other words, in traditional approach we
are always low eringthe lev el of the program to the
level of the source language.

Instead of this we can try to customize our target
language generation based on features of the project-
speci�c language. It is quite possible that we will �nd
better equivalen ts for them in the target language, es-
pecially if the target language has richer set of native
language constructions than the source one (for in-
stance, it can support objects, complex data types or
simply contain more useful functions in its standard
environment).

T o illustrate our reasoning we will return to the �rst
example. Suppose that during legacy understanding
w emanaged to determine that the project language
is object{oriented and we reected this knowledge in
our parser. In this case the result of transformation to
Java will have the look and feel of native Java code:

class Point {

private int x, y;

public int get_x() { return x; }

public int get_y() { return y; }

public void set_x(int value) { x = value; }

public void set_y(int value) { y = value; }

}

class p {

public static void main(String args[]) {

Point pnt = new Point();

pnt.set_x(1);

pnt.set_y(2);

System.out.print("(" + pnt.get_x()

6

Proceedings of the Sixth European Conference on Software Maintenance and Reengineering (CSMR�02)
1534-5351/02 $17.00 © 2002 IEEE

+ "," + pnt.get_y() + ")");

}

}

In the meantime transliteration ofthe source pro-
gram to Java will end up with the code, in which the
meaning of the program will be completely obscured
by inessential details.

Similar results could be achiev edwith error han-
dling example. General idea of conversion for this ex-
ample could be represented in the following skeleton
of the program:

class p {

public static void main(String[] args) {

try {

...

/* statements such as IF I<1 ...

and IF SQLCODE <> 0 ...

simply disappeared */

}

catch (SQLException e) { ... }

catch (ArrayIndexOutOfBoundsE xceptio n a)

{ ... }

}

}

As a result of customization of our reengineering
tool, we generate programs that manage to reect id-
ioms that were emulated in the original legacy systems
and are natively supported in the target language. If
we know in advance that legacy system is to be con-
verted to some other language, we can specially look
for patterns in the original programs that could be
con veniently represented in the target language. But
of course, w eshould not limit ourselves only to this
scenario.

4 Discussion

The biggest concern about applicability of project{
speci�c languages in reengineering is the correlation
betw een the cost of extracting the project-speci�c lan-
guage and the bene�ts that it promises. While it is
not possible to make any trustworthy predictions on
the basis of one application, w ebeliev ethat notable
advantages in the quality of the generated code should
clearly outbalance the cost of updating the tool. How-
ev er, w ehave to admit that the assumption that is
implicitly made in our approach | that it is possible
to update the reengineering tool itself during legacy
transformation | is quite strong and may not be an
option in a lot of reengineering projects.

For this and other reasons w e do not expect an
approach described in this article to be e�ective in
all cases. On the contrary , if the application to be
reengineered is small, then the cost of customizing the
tools would become too high to consider this possibil-
ity. But then again, the most diÆcult problem is usu-
ally the sheer size of the legacy systemthat requires
reengineering, and for project{speci�c languages the
bigger is usually the better, because the time spent on
updating the tools can be more than compensated for
during subsequent application of these tools.

F or instance, just the before submission of this pa-
per w ehad an opportunity to assess applicability of
our approach on an example of large legacy system
that consisted of nearly tw omillion lines of code in
PL/I. In-depth studyof this system sho wed thatthe
majority of the code in this application was actually
generated by preprocessing of some templates. Natu-
rally , this observation has changed the entire method
of attac king the problem.It is clear that in this case
the original templates for preprocessing can provide
much more information than the results of their ex-
pansion. Once w edetermine the structure of these
templates, we can instantly add them to the project{
speci�c language of this system and apply these de�-
nitions during subsequent language conversion.

Another objection to proposed approach is that in
industrial system written by large team without strict
discipline of programming we may fail to �nd repeat-
able and widespread templates. And indeed, most of
us have encountered a lot of examples of \spaghetti"
code where the templates suitable for inclusion in to
project language w ere scattered all over the source
code.

This problem is really diÆcult, but in our opinion
it can be successfully dealt with. We can start with
preliminary restructuring of the code, which is needed
for this type of legacy systems an yway. Also, even
in these unstructured systems we can �nd useful pat-
terns | only it is more likely that they will be more
complicated and would not look like simple syntactic
extensions.

As a side remark, we would like to point out that
any reengineering technique would be diÆcult to apply
to these unstructured systems. In fact, all reengineer-
ing techniques are heavily favoring good programming
style: ev en program restructuring that theoretically
should work well with any kind of input can produce
better or w orse resultsdepending on the initial pro-
gram.

Finally, w e think that there is a lot of room for
improvement in the area of tool support for the process

7

Proceedings of the Sixth European Conference on Software Maintenance and Reengineering (CSMR�02)
1534-5351/02 $17.00 © 2002 IEEE

of language extraction. F or example, it would be good
to have special tools for validation of our hypotheses
about constructions that are under consideration. In
our example from section 2 we supposed that we can
in terpret some variables as an in ternal data of some
object, and functions as members of that object. It
w ouldbe useful to be able to check whether object{
orien ted semantics is really adequately supported.

Ideally , veri�cation of our hypotheses should be
(partially) automated, even though formal veri�cation
of h ypothesis is usually quite expensive [19]. Currently
this stage is supported only by existing legacy under-
standing functionality, such as diagramming and pro-
gram navigation tools.

5 Conclusion

In this article w epresented an approach that ex-
ploits informal knowledge about the legacy system.
We believe that this approach could be useful during
reengineering process, and so the \ideal" reengineering
tool must support the interactiv eprocess of under-
standing the legacy system and allo w customization
for any given legacy system.

We proposed the notion of project{speci�c lan-
guages and demonstrated the possibilities of its ap-
plication in softw are reengineering.Our approach was
validated in a real{life project.

6 Appendix

In this appendix we would like to show construction
of object{oriented extension of PL/I using its prepro-
cessor. We go into these details only to prove technical
feasibilit y of this approach; this implementation is not
essen tial for the purposes of the paper.

%PROPERTY: proc (NAME, AS)

statement returns (char);

dcl (NAME, AS) char;

return ('2 ' || NAME || ' ' || AS || ',');

%end;

%MEMBER: proc (NAME, OF, TAKES, RETURNS)

statement returns (char);

dcl (NAME, OF, TAKES, RETURNS) char;

dcl parmset builtin;

dcl parmlist char;

parmlist = '_this';

if parmset(takes) & takes ^= ''

then parmlist = parmlist || ', ' || TAKES;

return

(

NAME || ': proc (' || parmlist

|| ') returns (' || RETURNS || ');'

|| 'dcl _this pointer, _data like '

|| OF || ' based (_this); '

);

%end;

%ENDMEMBER: proc statement returns (char);

return ('end;');

%end;

%CLASS: proc (NAME) statement returns (char);

dcl NAME char, classname char;

return ('dcl 1 ' || NAME || ',');

%end;

%ENDCLASS: proc statement returns (char);

return (';');

%end;

%INVOKE: proc (NAME, FROM, PASSING)

statement returns (char);

dcl (NAME, FROM, PASSING) char;

if PASSING ^= ''

then PASSING = ', ' || PASSING;

return ('CALL ' || NAME || '(ADDR('

|| FROM || ')' || PASSING || ')');

%end;

%dcl THIS char;

%THIS='_this->_data ';

%act PROPERTY, CLASS, ENDCLASS, MEMBER,

ENDMEMBER, THIS, INVOKE norescan;

References

[1] A.N. Terekhov, L.A. Erlikh, A.A. Terekhov \His-
tory and Architecture of RescueWare Project"
// In \Automated Softw are Reengineering",
A. N. T erekhov, A. A. T erekhov (eds.), St. Pe-
tersburg, 2000, pp. 7{19 (in Russian)

8

Proceedings of the Sixth European Conference on Software Maintenance and Reengineering (CSMR�02)
1534-5351/02 $17.00 © 2002 IEEE

[2] A.A. T erekhov, C. V erhoef \The Realities of
Language Conversions", IEEE Softw are, Novem-
ber/December 2000, Vol. 17, No. 6, pp. 111{124.

[3] A. Quilici \A Memory-Based Approach to Rec-
ognizing Programming Plans", Communications
of the ACM, Vol. 37, No. 5, pp. 84{93, 1994.

[4] Z.-Y. Liu, M. Ballantyne, L. Seward, \An As-
sistan t for Re-Engineering Legacy Systems", In
Proceedings of the 6th Conference on Innovative
Applications of Arti�cial Intelligence, pp. 95-102,
1994.

[5] C. Rich, L. M. Wills \Recognizing a Program's
Design: A Graph-Parsing Approach", IEEE Soft-
w are, Vol. 7, No. 1, pp. 82{89, January 1990.

[6] A. Quilici, S. Woods, Y. Zhang \Program Plan
Matching: Experiments with a Constraint-Based
Approach", Science of Computer Programming,
V ol. 36, No. 2{3, pp. 285{302, 2000.

[7] A. Sellink, C. Verhoef \Native Patterns", In Pro-
ceedings of the 5th IEEE Working Conference on
Reverse Engineering, Honolulu, Haw aii, USA, pp.
89{103. 1998.

[8] W. Kozaczynski, J. Q. Ning, A. Engberts \Pro-
gram Concept Recognition and Transformation",
IEEE Transactions on Softw are Engineering, Vol.
18, No. 12, December 1992, pp. 1065{1075.

[9] W. Kozaczynski, J. Q. Ning \Automated Pro-
gram Understanding by Concept Recognition",
Automated Softw are Engineering Journal, Vol. 1,
No. 1, 1994, pp. 61{78.

[10] T.J. Biggersta�, B.G. Mitbander, D.E. Web-
ster \Program Understanding and the Concept
Assignment Problem", Communications of the
A CM, May 1994, pp. 72{82.

[11] L. H. Etzkorn, C. G. Davis \Automatically Iden-
tifying Reusable OO Legacy Code", Computer,
October 1997, pp. 66{71.

[12] R. C. Waters \Program Translation via Abstrac-
tion and Reimplementation", IEEE Transactions
on Softw are Engineering, Vol. SE-14, No. 8, Au-
gust 1988, pp. 1207{1228.

[13] C. Ric h,R. C. Waters \Programmer's Appren-
tice", ACM Press, 1990. 238 pp.

[14] B. Kernighan, P . J. Plauger \Soft w areT ools",
Addison-Wesley , Reading, MA. 1976. 338 pp.

[15] B. Cox \Object-Oriented Programming: An Evo-
lutionary Approach", Addison-Wesley , Reading,
MA. 1976.

[16] A. Sellink, C. V erhoef\Sca�olding for Soft w are
Renovation", In Proceedings of the 4th Confer-
ence on Soft w areMaintenance and Reengineer-
ing, Zurich, Switzerland, 2000, pp. 151{160.

[17] M. van der Brand, A. Sellink, C. V erhoef \Cur-
rent P arsing Techniques in Soft ware Renovation
Considered Harmful", In Proceedings of the In-
ternational Workshop on Program Comprehen-
sion, Isc hia, Italy, 1998, pp. 108{117.

[18] J. W. Klop \Term rewriting systems", In Hand-
book of Logic in Computer Science, Vol. II, Ox-
ford University Press, 1992, pp. 1{116.

[19] B. W. Weide, W. D. Heyrn \Reverse Engineering
of Legacy Code Exposed", In Proceedings of the
In ternational Conference on Softw areEngineer-
ing, Seattle, WA, 1995, pp. 327{331.

9

Proceedings of the Sixth European Conference on Software Maintenance and Reengineering (CSMR�02)
1534-5351/02 $17.00 © 2002 IEEE

